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Abstract. We introduce a system of equations that models a non-isothermal magnetoviscoelastic fluid. We
show that the model is thermodynamically consistent, and that the critical points of the entropy functional
with prescribed energy correspond exactly with the equilibria of the system. The system is investigated
in the framework of quasilinear parabolic systems and shown to be locally well-posed in an L p-setting.
Furthermore, we prove that constant equilibria are normally stable. In particular, we show that solutions that
start close to a constant equilibrium exist globally and converge exponentially fast to a (possibly different)
constant equilibrium. Finally, we establish that the negative entropy serves as a strict Lyapunov functional
and we then show that every solution that is eventually bounded in the topology of the natural state space
exists globally and converges to the set of equilibria.

1. Introduction

We study the following system of equations that models the evolution of a magne-
toviscoelastic fluid, allowing for a non-constant temperature in a C3-bounded domain
� ⊂ R

3 with outward unit normal ν:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + u · ∇u − ∇ · (µ(θ)∇u) + ∇π = −∇ · (∇m � ∇m) + ∇ · (FFT) in �,

∇ · u = 0 in �,

u = 0 on ∂�,

∂t F + u · ∇F − ∇ · (κ(θ)∇F) = (∇u)TF in �,

F = 0 on ∂�,

∂tθ + u · ∇θ + ∇ · q = µ(θ)|∇u|2 + κ(θ)|∇F |2 + α(θ)|	m + |∇m|2m|2 in �,

q · ν = 0 on ∂�,

∂tm + u · ∇m = −α(θ)m × (m × 	m) − β(θ)m × 	m in �,

∂νm = 0 on ∂�,

|m| = 1 in �,

(u(0), F(0), θ(0),m(0)) = (u0, F0, θ0,m0) in �.

(1.1)
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Themeaning of the expressions∇m�∇m,∇ ·(∇m�∇m),∇u, and∇ ·F is explained
below in the paragraph titled notation. The equations above comprise a coupled system,
consisting of

1. the incompressible Navier–Stokes equations with variable viscosity coefficient
µ(θ) for the velocity field

u : (0, T ) × � → R
3

with a right-hand side that includes the elastic stress tensor induced by the
magnetizationfieldm and thedeformation tensor F .Moreover,π : (0, T )×� →
R denotes the pressure function;

2. a transport-dissipative system for the deformation tensor

F : (0, T ) × � → M
3 := R

3×3

with variable dissipative coefficient κ(θ) and stretching term (∇u)�F ;
3. a transported anisotropic heat equation for the (absolute) temperature function

θ : (0, T ) × � → R

with the heat flux q given by the generalized Fourier law [9,36]

q = q(u, F, θ,m) = −K (u, F, θ,m)∇θ, (1.2)

where K (u, F, θ,m) is a positive-definite,matrix-valued functionof (u, F, θ,m)

which reflects the inhomogeneity of the material. For example, one may choose

q = −h(θ)∇θ − k(θ)(∇θ · m)m,

where h(θ) describes the variable heat conductivity, while k(θ) represents the
inhomogeneous thermal conductivity along the direction preferred by themagne-
tizationwithin themedium. In this case, K (u, F, θ,m) = h(θ)I3+k(θ)(m⊗m);

4. a convected Landau–Lifshitz–Gilbert system for the magnetization field

m : (0, T ) × � → S
2 = {d ∈ R

3 : |d| = 1}
with variable Gilbert damping parameter α(θ) and exchange parameter β(θ).

The model can be used to describe so-called smart fluids (magnetorheological flu-
ids), that is, fluids carrying magnetoelastic particles. Because of their remarkable
properties, magnetoelastic materials are widely used in technical applications.
When fluids are subjected to heat, their molecules experience internal movement

due to changes in temperature. This compound effect can be described by differen-
tial equations that govern the laws of these changes. While numerous publications
have been devoted to the dynamics of magnetoviscoelastic fluids in the isothermal
case (see, for example, [5,7,10,14,15,21,34,38]), there is a lack of research on the
thermodynamic effects associated with these fluids.
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A related class of thermodynamically consistent models for incompressible non-
isothermal nematic liquid crystal flows has been developed using the Ericksen–Leslie
formalism, as discussed in [6,11,17–19]. Specifically, De Anna and Liu extended the
general Ericksen–Leslie system and the general Oseen–Frank energy density in [6],
and they obtain a global well-posedness result of strong solutions for initial data that
are close to equilibrium in suitable homogeneous Besov spaces. Another approach
to modeling non-isothermal nematic liquid crystals is presented in [11], where the
authors introduce an energetically closed system and derive the equations using a gen-
eralized variational principle. They show the existence of global weak solutions for
suitable initial data in a three-dimensional bounded domain with a sufficiently regular
boundary. Meanwhile, Hieber and Prüss analyzed the non-isothermal Ericksen–Leslie
system by means of maximal L p-regularity techniques for quasilinear parabolic evo-
lution equations in [17,19]. They demonstrate the local existence of classical solutions
and the stability of solutions subject to initial data that are close enough to an equi-
librium for the case of linear boundary conditions. It is also worth noting that the
authors in [12,13] consider non-isothermal nematics using the Q-tensor as the order
parameter. They prove global existence of weak solutions with the Landau–DeGennes
polynomial potential and the Ball–Majumdar singular potential, which are commonly
used to describe the configuration of the liquid crystal molecules.

A detailed analysis reveals that system (1.1) features a quasilinear parabolic struc-
ture, and we are employing the theory of maximal regularity, see for instance [32],
to study existence, uniqueness, and qualitative properties of solutions. With this ap-
proach in mind, there are several difficulties that arise in the mathematical analysis.
For instance,

• The equation (1.1)6 for the temperature θ contains terms that have a highly
nonlinear dependence on the magnetic field m; namely, the equation contains a
term that is quadratic in second-order derivatives ofm. On a technical level, this
means that we need to work in function spaces that encode higher regularity for
the magnetic field m.

• The flux vector q in (1.2) is allowed to depend in a nonlinear way on the variables
(u, F, θ,m). The boundary condition q ·ν = 0 then leads to a nonlinear boundary
conditionwhich is to be satisfied by the solutions. This implies that solutions ‘live
on a nonlinear manifold,’ and this adds significant challenges to a mathematical
treatment.

Quasilinear parabolic systems with nonlinear boundary conditions have been stud-
ied in the literature by several authors, for instance in [20,22,23,25–27]. However, the
results contained in these publications cannot be applied directly to the model (1.1).
For instance, while these works cover a very general class of quasilinear parabolic
systems with nonlinear boundary conditions, they do not include a coupling to the
Navier–Stokes equations. Moreover, these works do not feature equations which con-
tain quadratic terms in the highest derivatives of some of the variables.
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Due to the structure of the nonlinear terms in the temperature equation, it seems
infeasible to find a realization of (1.1) in so-called extrapolation spaces, which would
be helpful in order to absorb nonlinear boundary conditions of co-normal type, see for
instance [2,35].
Finally, we would like to mention that the techniques developed in this paper can

be generalized to also cover fully nonlinear boundary conditions, and we could also
admit nonlinear boundary conditions for the remaining variables.
Themanuscript is structured as follows. In Sect. 2, we show that system (1.1) is ther-

modynamically consistent. In addition, we provide a characterization of the equilibria
and we show that the critical points of the constrained entropy functional correspond
exactly to these equilibria. In Sect. 3, we introduce a functional analytic setting to
study the system (1.1). In Sect. 4, we provide existence and uniqueness results for
some related linear problems, which will then form the basis to establish the local
well-posedness of strong solutions for system (1.1), carried out in Sect. 5. In the main
theorem of this section, Theorem 5.3, we show that system (1.1) generates a Lips-
chitz continuous semiflow on the state manifold (defined by the nonlinear boundary
condition). Here, we have been inspired by the approach in [22,26,27]. In addition,
we show that the temperature satisfies a maximum principle. In Sect. 6, we provide
criteria for global existence. In addition, we study stability of constant equilibria; in
particular, we show that solutions that start close to a constant equilibrium exist glob-
ally and converge exponentially fast to a (possibly different) constant equilibrium.
Finally, in “Appendix A,” we establish some relevant properties of fractional Sobolev
spaces with temporal weights, and in “Appendix B,” we study mapping properties of
the nonlinearities associated with system (1.1).

Notation: For the readers’ convenience, we list here some notations and conventions
used throughout the manuscript.
In the following, all vectors a = (a1, . . . , an) ∈ R

n are viewed as column vectors.
For two vectors a, b ∈ R

n , the Euclidean inner product is denoted by a · b. Given two
matrices A, B ∈ M

n , the Frobenius matrix inner product A : B is given by

A : B = trace(ABT),

where T is the transpose. Suppose � is an open subset of Rn . If u ∈ C1(�;Rn), we
set ∇u(x) = e j ⊗ ∂ j u(x) for x ∈ �. Hence, for u = (u1, . . . , un) ∈ C1(�;Rn), we
have

[∇u(x)]i j = ∂i u j (x), 1 ≤ i, j ≤ n, x ∈ �.

We note that [∇u(x)]T corresponds to the Fréchet derivative of u at x ∈ �.
If A ∈ C1(�;Mn), its divergence ∇ · A is the vector function defined by

(∇ · A)(x) = (∂ j A(x))Te j , x ∈ �. (1.3)

Hence, if A = [ai j ] ∈ C1(�;Mn), its divergence is given by

[(∇ · A)(x)]i = ∂ j a ji (x), i = 1, . . . , n, x ∈ �.
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Here and in the sequel, we use the summation convention, indicating that terms with
repeated indices are added. We note that (1.3) implies

(∇ · A) · u = ∇ · (Au) − A : ∇u, A ∈ C1(�;Mn), u ∈ C1(�;Rn). (1.4)

For amatrix A ∈ C1(�;Mn),we set |∇A|2 = ∂ j A : ∂ j A.Finally, form ∈ C1(�;R3),
∇m � ∇m denotes the symmetric tensor given by [∇m � ∇m]i j = (∂im|∂ jm),
1 ≤ i, j ≤ 3.

For functions f, g ∈ L2(�;Rm),

( f |g)� =
∫

�

f · g dx

denotes the L2-inner product. For any Banach space X , s ≥ 0, p ∈ (1,∞),Ws
p(�; X)

denote the X -valued Sobolev(-Slobodeckij) spaces.When the choice of X is clear from
the context, we will just write Ws

p(�).

Given any T ∈ (0,∞], we will denote the interval (0, T ) by JT . For p ∈ (1,∞)

and μ ∈ (0, 1], the X -valued L p-spaces with temporal weight are defined by

L p,μ(JT ; X) :=
{
f : (0, T ) → X : [t �→ t1−μ f (t)] ∈ L p(JT ; X)

}
.

Similarly, for k ∈ N,

Wk
p,μ(JT ; X) :=

{
f ∈ Wk

1,loc(JT ; X) : ∂
j
t f ∈ L p,μ(JT ; X), j = 0, 1, . . . , k

}
.

For s ∈ (0, 1), the Sobolev–Slobodeckij spaces with temporal weights are defined as

Ws
p,μ(JT ; X) := {u ∈ L p,μ(JT ; X) : ‖u‖Ws

p,μ(JT ;X) < ∞},

where

‖u‖Ws
p,μ(JT ;X) = ‖u‖L p,μ(JT ;X) + [u]Ws

p,μ(JT ;X),

[u]Ws
p,μ(JT ;X) :=

(∫ T

0

∫ t

0
τ p(1−μ) ‖u(t) − u(τ )‖p

X

(t − τ)sp+1 dτdt

)1/p

,
(1.5)

see [28, Formula (2.6)]. ‖ · ‖Ws
p,μ(JT ;X) is termed the intrinsic norm of Ws

p,μ(JT ; X).

For any two Banach spaces X and Y , the notation L(X,Y ) stands for the set of all
bounded linear operators from X to Y and L(X) := L(X, X). Lis(X,Y ) denotes the
subset of L(X,Y ) consisting of linear isomorphisms from X to Y .

Finally, in this article, � : R+ → R+ always denotes a continuous non-decreasing
function satisfying

�(r) → 0+ as r → 0+.
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2. Thermodynamic consistency

In this section, we discuss the thermodynamic properties of (1.1). We introduce the
following assumptions:

µ, κ, α, β ∈ C5(R), K ∈ C5(R3 × M
3 × R × R

3; sym (M3));
µ ≥ µ, κ ≥ κ, α ≥ α, K ≥ cI3,

(2.1)

where µ, κ, α and c are given positive constants. Here, we assume C5-smoothness for
convenience.
We assume that the Helmholtz free energy density ψ is given by

ψ = ψ(F, θ,m) = 1

2
|F |2 + 1

2
|∇m|2 − θ ln θ.

Then, the entropy density η and the internal energy density eint can be obtained via
the following thermodynamic relations, see for instance [32, page 7]:

η = −∂θψ = 1 + ln θ (the Maxwell relation)
eint = ψ + θη = 1

2 |F |2 + 1
2 |∇m|2 + θ (the Legendre transform of ψ w. r. t. η).

We can derive from the equation for θ in (1.1) the entropy evolution

∂tη + u · ∇η + ∇ · g = r, (2.2)

where g denotes the entropy flux which satisfies the Clausius–Duhem relation (see for
instance page 7 in [32])

g = q

θ
,

and where the entropy production rate r is given as

r = 1

θ

[

µ(θ)|∇u|2 + κ(θ)|∇F |2 + α(θ)|	m + |∇m|2m|2 − q · ∇θ

θ

]

. (2.3)

The thermodynamic consistency of (1.1) is established in the following result.

Proposition 2.1. Suppose (u, F, θ,m) is a solution of (1.1) with the regularity prop-
erties asserted in Theorem 5.3. Then, the following properties hold.

(a) (First law of thermodynamics). The total energy

E = E(u, F, θ,m) =
∫

�

(
1

2
|u|2 + eint) dx =

∫

�

(
1

2
|u|2 + 1

2
|F |2 + 1

2
|∇m|2 + θ) dx

is preserved along the solution (u, F, θ,m).
(b) (Second law of thermodynamics). The total entropy

N = N(θ) =
∫

�

η dx =
∫

�

(1 + ln θ) dx

is non-decreasing along the solution (u, F, θ,m). In fact, the entropy production
rate r is always non-negative, i.e., r ≥ 0.
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Proof. Let (u, F, θ,m) be a solution of (1.1) with initial value z0 = (u0, F0, θ0,m0)

defined on its maximal interval of existence [0, T+(z0)), see Theorem 5.3 for the
precise regularity assertions. Let T ∈ (0, T+(z0)) be fixed. For notational simplicity,
we suppress the time variable in the following computations.
For (a), we follow the calculations in [10, Proposition 4.1] to obtain

d

dt

∫

�

1

2

(
|u|2 + |F |2 + |∇m|2

)
dx

= −
∫

�

[
µ(θ)|∇u|2 + κ(θ)|∇F |2 + α(θ)|	m + |∇m|2m|2

]
dx, t ∈ (0, T ).

(2.4)

Meanwhile, integrating the equation for θ in (1.1) over�, from an integration by parts
and the relations ∇ · u = 0 and (u, q · ν) = (0, 0) on ∂�, we have

d

dt

∫

�

θ dx =
∫

�

[
µ(θ)|∇u|2 + κ(θ)|∇F |2 + α(θ)|	m + |∇m|2m|2] dx, t ∈ (0, T ).

(2.5)

Now, adding (2.4) and (2.5) yields d
dtE = 0 for t ∈ (0, T ).

For (b), we obtain from the equation for θ in (1.1), theMaxwell relation η = 1+ln θ ,
and (2.2) that

∂tη + u · ∇η

= 1

θ
(∂tθ + u · ∇θ)

= 1

θ

(
−∇ · q + µ(θ)|∇u|2 + κ(θ)|∇F |2 + α(θ)|	m + |∇m|2m|2

)

= −∇ · g + 1

θ

[

µ(θ)|∇u|2 + κ(θ)|∇F |2 + α(θ)|	m + |∇m|2m|2 − q · ∇θ

θ

]

= −∇ · g + r, t ∈ (0, T ).

By (1.2), we have−q ·∇θ = K∇θ ·∇θ ≥ c|∇θ |2 ≥ 0, and hence r ≥ 0. This implies

d

dt
N = d

dt

∫

�

η dx =
∫

�

(−u · ∇η − ∇ · g + r) dx =
∫

�

r dx ≥ 0, t ∈ (0, T ),

(2.6)

and hence the assertion holds. �

2.1. Entropy and equilibria

Here, we follow the arguments in [32, Section 1.2], see also [19], to discuss the
equilibria of system (1.1) and their connection to the critical points of the entropy
functional. We begin with a characterization of the equilibria.
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Proposition 2.2. (a) The set E of equilibria of (1.1) is given by

E = {(u∗, F∗, θ∗,m∗) ∈ {0} × {0} × (0,∞) × C∞(�)},
where m∗ satisfies the harmonic map equation with homogeneous Neumann
boundary condition

⎧
⎪⎨

⎪⎩

	m + |∇m|2m = 0 in �,

|m| ≡ 1 in �,

∂νm = 0 on ∂�.

(2.7)

Moreover, the equilibrium pressure is given by π∗ = − 1
2 |∇m∗|2 + C, where C

is some constant.
(b) −N is a strict Lyapunov function for (1.1).

Proof. (a) Suppose z∗ = (u∗, F∗,m∗, θ∗) is an equilibrium for (1.1). Then, d
dtN = 0

and it follows from (2.3), (2.6) that (∇u∗,∇F∗,∇θ∗,	m∗ + |∇m∗|2m∗) =
(0, 0, 0, 0), as

−q∗ · ∇θ∗ = K (z∗)∇θ∗ ≥ c|∇θ∗|2.
The boundary conditions (u∗, F∗) = (0, 0) readily imply (u∗, F∗) = (0, 0). In
addition, we conclude that θ∗ is a constant. Finally, we can derive from (1.1)1 that
∇π∗ = −∇( 12 |∇m∗|2), and hence π∗ = −( 12 |∇m∗|2 + C) with some constant
C .

(b) Let (u, F, θ,m) be a solution of (1.1) with the regularity properties of Theo-
rem 5.3, defined on the maximal interval of existence [0, T+(z0)). Suppose that
d
dtN = 0 on some interval (t1, t2) ⊂ (0, T+(z0)). Then, r ≥ 0 implies r(t) ≡ 0 in
� for t ∈ (t1, t2). We conclude as above that (u(t), F(t)) = (0, 0) and θ(t) = c
for t ∈ (t1, t2), where c > 0 is a constant. Therefore,

(∂t u(t), ∂t F(t), ∂tθ(t)) = (0, 0, 0), t ∈ (t1, t2).

Moreover,	m(t)+|∇m(t)|2 m(t) = 0 for t ∈ (t1, t2). Taking the cross-product
of both sides of this equation with m(t) results in

m(t) × 	m(t) = −|∇m(t)|2(m(t) × m(t)) = 0, t ∈ (t1, t2).

Hence, we conclude that ∂tm(t) = 0 for t ∈ (t1, t2). This shows that the solution
is at equilibrium. �

We will now provide an informal discussion concerning the critical points of the
constrained entropy functional.
Suppose that (u, F, θ,m) is a sufficiently smooth critical point of N with θ > 0,

subject to the constraints G(m) = (|m|2 − 1)/2 = 0, E = E0, and the boundary
conditions in (1.1). By the Lagrange multiplier method, we get λE ∈ R and λG ∈
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L2(�) such that the first variation of N at z = (u, F, θ,m) with respect to w =
(v, J, ϑ, n) satisfies

〈(N′ + λEE
′ + λGG

′)(z)|w〉 = 0.

We have

〈N′(z)|w〉 =
∫

�

∂θη ϑ dx =
∫

�

ϑ

θ
dx,

〈λEE′(z)|w〉 =
∫

�

λE(u · v + F : J + ϑ + ∇m : ∇n) dx,

〈λGG
′(z)|w〉 =

∫

�

λG m · n dx .

This yields the relation

0 =
∫

�

[(1/θ + λE)ϑ + λE(u · v + F : J − 	m · n) + λG m · n] dx, (2.8)

where we employed the boundary condition ∂νm = 0 to derive

∫

�

∇m : ∇n dx =
∫

�

−	m · n dx .

Now, setting (v, J, n) = (0, 0, 0) in (2.8), it follows that λE = −1/θ , as ϑ can
be arbitrary. Notice that λE ∈ R, hence θ = θ∗ is constant and λE < 0. Similarly,
setting (u, F) = (0, 0), we see that m solves the equation −λE	m + λGm = 0, with
boundary condition ∂νm = 0. Moreover, |m| = 1 on �. We can then conclude that

λG = λG |m|2 = λE	m · m = λE∇ · [(∇m)m] − λE|∇m|2 = −λE|∇m|2, (2.9)

where we used the fact that (∇m)m = 0 due to |m| = 1. This implies

	m + |∇m|2m = 0,

hence m satisfies the harmonic map equation (2.7). Therefore, the critical points z =
(u, F, θ,m) of the constrained entropy functional correspond exactly to the equilibria
E of the system.
Meanwhile, let

H(z) := (N′′ + λEE
′′ + λGG

′′)(z)

be the second variation ofN at a generic point z = (u, F, θ,m). A direct computation
yields

(H(z)w|w)� =
∫

�

[− 1

θ2
ϑ2 + λE(|v|2 + |J |2 + |∇n|2) + λG |n|2] dx,
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where w = (v, J, ϑ, n). At a critical point z∗ = (0, 0, θ∗,m∗), we obtain, in conjunc-
tion with the relation λG = −λE|∇m∗|2, see (2.9),

(H(z∗)w|w)� =
∫

�

[− 1

θ2∗
ϑ2 − 1

θ∗
(|v|2 + |J |2 + |∇n|2 − |∇m∗|2|n|2] dx .

Amoment of reflection shows that N (E′(z∗)) and N (G ′(z∗)), the null space of E′(z∗)
and G ′(z∗), respectively, is given by

N (E′(z∗)) = {(v, J, ϑ, n) :
∫

�

ϑ dx = 0,
∫

�

∇m∗ : ∇n dx = 0},
N (G ′(z∗)) = {(v, J, ϑ, n) : m∗ · n = 0 in �}.

We note that the conditionm∗ ·n = 0 in� implies
∫

�
∇m∗ : ∇n dx = 0. This follows

from the relation

0 = |∇m∗|2m∗ · n = −	m∗ · n
and an integration by parts. Hence, we have

N∗ := N (E′(z∗)) ∩ N (G ′(z∗)) = {(v, F, ϑ, n) :
∫

�

ϑ dx = 0, m∗ · n = 0 in �}.

This yields

(H(z∗)w|w)� = − 1

θ∗

∫

�

(
ϑ2

θ∗
+ |v|2 + |J |2 + |∇n|2 − |∇m∗|2|n|2

)

dx,

w = (v, J, ϑ, n) ∈ N∗.

We conclude that H(z∗)|N∗ , the restriction of H(z∗) on N∗, is negative semi-definite
iff

∫

�

(|∇n|2 − |∇m∗|2|n|2) dx ≥ 0, n ∈ C∞
c (�;R3). (2.10)

In case relation (2.10) holds for all n satisfying m∗ · n = 0 in �, m∗ is called a stable
harmonic map, see for instance [24, formula (1.5)]. Note that (2.10) holds if m∗ ∈ S

2

is constant. This shows that the validity of the relation (2.10) is necessary for the
constrained entropy functional to have a (local) maximum at a critical point. We refer
to [8, Theorem 26.2] for more background on extrema for constrained problems in
infinite-dimensional Banach spaces.
Summarizing, we have (informally) shown the following result.

• The equilibria of (1.1) are precisely the critical points of the entropy functional
with prescribed energy.

• The condition (2.10) is necessary for the constrained entropy functional to have
a local maximum at a critical point. This always holds true in case m∗ ∈ S

2 is
constant.
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Remark 2.3. (a) We notice that equilibria which are (local) maxima of the con-
strained entropy functional are the ultimate states where the system is evolving
toward. These are necessarily (locally) stable, as entropy can then no longer
increase.

(b) It is stated in [16, Lemma 5.2], see also [17, Lemma 1] and [32, Lemma 12.2.4],
that the nonlinear problem (2.7) admits only constant solutions m∗ ∈ S

2. How-
ever, this assertion is not correct in the form stated, as the following example
shows: Let � = {x ∈ R

3 : 0 < r1 < |x | < r2} and m : � → S
2 be defined by

m∗(x) = x/|x |. Then, m∗ is a (non-constant) solution of (2.7).

3. The functional analytic setting

Following the formulation in [10, Section 2], we rewrite the system (1.1) as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + u · ∇u − ∇ · (µ(θ)∇u) + ∇π = −∇ · (∇m � ∇m) + ∇ · (FF�) in �,

∇ · u = 0 in �,

u = 0 on ∂�,

∂t F + u · ∇F − ∇ · (κ(θ)∇F) = (∇u)�F in �,

F = 0 on ∂�,

∂tθ + u · ∇θ − ∇ · (K (z)∇θ) = µ(θ)|∇u|2 + κ(θ)|∇F |2
+ α(θ)|	m + |∇m|2m|2 in �,

ν · (K (z)∇θ) = 0 on ∂�,

∂tm − (α(θ)I3 − β(θ)M(m))	m = α(θ)|∇m|2m − u · ∇m in �,

∂νm = 0 on ∂�,

(u(0), F(0),m(0), θ(0)) = (u0, F0,m0, θ0) in �,

(3.1)

where z = (u, F, θ,m),

M(m) =
⎡

⎣
0 −m3 m2

m3 0 −m1

−m2 m1 0

⎤

⎦ , with m = (m1,m2,m3).

One readily verifies that m × 	m = M(m)	m. Notice that the constraint |m| = 1 is
dropped in (3.1). It will be shown later that the condition |m| ≡ 1 is in fact preserved,
provided |m0| = 1.
Given any z̃ = (̃u, F̃, θ̃ , m̃) ∈ C1(�;R3×R

9×R×R
3) (where we have identified

M
3 with R9), we introduce the operators

A1(θ̃)u := −PH (∇ · (µ(θ̃)∇u)),

A2(θ̃)F := −∇ · (κ(θ̃)∇F),

A3(̃z)θ := −∇ · (K (̃z)∇θ),

A4(θ̃ , m̃)m := −(α(θ̃)I3 − β(θ̃)M(m̃))	m − α(θ̃)|∇m̃|2m.
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Here, PH : L p(�;R3) → L p,σ (�;R3) denotes the Helmholtz projection.
For later use, we show that the principal part A4

�(θ̃ , m̃) = (α(θ̃)I3 − β(θ̃)M(m̃))	

of A4(θ̃ , m̃) is (uniformly) normally elliptic, see for instance [32, Definition 6.1.1].
For this, let (θ̃ , m̃) ∈ C(�) × C(�;R3) be given. The symbol SA4

�(θ̃ , m̃)(x, ξ) of

A4
�(θ̃ , m̃) is given by

SA4
�(θ̃ , m̃)(x, ξ) = (α(θ̃(x))I3 − β(θ̃(x))M(m̃(x))

)|ξ |2, (x, ξ) ∈ � × R
3.

For |ξ | = 1, we obtain for the spectrum σ (i.e., the eigenvalues)

σ(SA4
�(θ̃ , m̃)(x, ξ)) = {α(θ̃(x)), α(θ̃(x)) ± iβ(θ̃(x))|m̃(x)|}, (x, ξ) ∈ � × S

2.

Hence, for each (θ̃ , m̃) ∈ C(�) × C(�;R3) and (x, ξ) ∈ � × R
3, the spectrum

of SA4
�(θ̃ , m̃)(x, ξ) is contained in a sector �ϑ = {z ∈ C\{0} : | arg z| < ϑ} with

opening angle ϑ , satisfying

tan(ϑ) ≤ maxx∈� |β(θ̃(x))||m̃(x)|
minx∈� α(θ̃(x))

≤ maxx∈� |β(θ̃(x))||m̃(x)|
α

≤ M,

where α > 0 is the constant introduced in (2.1) and M ≥ 0 is an appropriate constant.
Hence, ϑ < π/2.
Setting

[C1(m̃)m]i = ∂i m̃ · 	m + ∇m̃ : ∂i∇m, i = 1, 2, 3,

it follows that

C1(m)m = ∇ · (∇m � ∇m), m ∈ W 2
p(�;R3),

C1(m̃) ∈ L(W 2
p(�;R3), L p(�;R3)), m̃ ∈ C1(�;R3).

For (θ̃ , m̃) ∈ C(�) × C2(�;R3), we set

C3(θ̃ , m̃)m := −α(θ̃)(	m̃ + |∇m̃|2m̃) · (	m + |∇m̃|2m).

One readily verifies that

C3(θ̃ , m̃) ∈ L(C2(�;R3),C(�,R3)).

We now introduce a functional analytic setting to study problem (3.1). For this, let

X0 := L p,σ (�;R3) × L p(�;M3) × L p(�;R) × W 1
p(�;R3), 1 < p < ∞.

Here, L p,σ (�;R3) := PH (L p(�;R3)) is the space of all solenoidal vector fields in
L p(�;R3) with PH : L p(�;R3) → L p,σ (�;R3) the Helmholtz projection. For all
s ≥ 0, we define

Ws
p,σ (�;R3) : = Ws

p(�;R3) ∩ L p,σ (�;R3).
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Moreover, we set

X1
1 := {u ∈ W 2

p,σ (�;R3) : u = 0 on ∂�},
X2
1 := {F ∈ W 2

p(�;M3) : F = 0 on ∂�},
X3
1 := {θ ∈ W 2

p(�)},
X4
1 := {m ∈ W 3

p(�;R3) : ∂νm = 0 on ∂�}.
For X1 := X1

1 × X2
1 × X3

1 × X4
1, we introduce the space of initial data as

Xγ,μ : = (X0, X1)μ−1/p,p

for μ ∈ (1/p, 1]. In the following, we assume

p > 5 and μ >
1

2
+ 5

2p
, (3.2)

which ensures that the embedding

W j+2μ−2/p
p (�) ↪→ C j+1(�), j = 0, 1, (3.3)

holds true. Observe that by [3, Theorem 3.4] and [37, Theorem 4.3.3],

(u, F, θ,m) ∈ Xγ,μ ⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ W 2μ−2/p
p,σ (�;R3) and u = 0 on ∂�,

F ∈ W 2μ−2/p
p,σ (�;M3) and F = 0 on ∂�,

θ ∈ W 2μ−2/p
p (�),

m ∈ W 1+2μ−2/p
p (�;R3) and ∂νm = 0 on ∂�.

Given any z̃ = (̃u, F̃, θ̃ , m̃) ∈ Xγ,μ, the operator

A(̃z) :=

⎡

⎢
⎢
⎣

A1(θ̃) 0 0 PHC1(m̃)

0 A2(θ̃) 0 0
0 0 A3(̃z) C3(θ̃ , m̃)

0 0 0 A4(θ̃ , m̃)

⎤

⎥
⎥
⎦ (3.4)

satisfies A(̃z) ∈ L(X1, X0).
In addition, given z = (u, F, θ,m), we introduce the boundary operator B(̃z),

defined by

B(̃z)z = ν · tr∂� ((K (̃z)∇θ)) , (3.5)

where tr∂� is the boundary trace operator.
Finally, we set

F(z) =

⎡

⎢
⎢
⎣

PH
[∇ · (FFT) − (u · ∇u)

]

(∇u)TF − u · ∇F
µ(θ)|∇u|2 + κ(θ)|∇F |2 − u · ∇θ

−u · ∇m

⎤

⎥
⎥
⎦ . (3.6)
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Using the notation introduced in (3.4), (3.5), and (3.6), we can restate the nonlinear
system (3.1) in the condensed form

⎧
⎪⎨

⎪⎩

∂t z + A(z)z = F(z) in �,

B(z)z = 0 on ∂�,

z(0) = z0 in �.

(3.7)

For notational brevity, given any T ∈ (0,∞], we define

E0,μ(JT ) := L p,μ(JT ; X0), E1,μ(JT ) := W 1
p,μ(JT ; X0) ∩ L p(JT ; X1),

Bμ(JT ) := BUC(JT ; Xγ,μ),

Fμ(JT ) := W 1/2−1/2p
p,μ (JT ; L p(∂�)) ∩ L p,μ(JT ;W 1−1/p

p (∂�)),

and

Yγ,μ = W 2μ−1−3/p
p (∂�).

For future analysis, we also introduce the spaces with vanishing trace at t = 0:

0E1,μ(JT ) := 0E
1
1,μ(JT ) × 0E

2
1,μ(JT ) × 0E

3
1,μ(JT ) × 0E

4
1,μ(JT )

:= {(z1, z2, z3, z4) ∈ E1(JT ) : γ0(z1, z2, z3, z4) = (0, 0, 0, 0)},
0Bμ(JT ) := {z ∈ Bμ(JT ) : γ0z = 0},
0Fμ(JT ) := {g ∈ Fμ(JT ) : γ0g = 0},

where γ0 denotes the trace operator at t = 0.

Lemma 3.1. Suppose that (p, μ) satisfy the Assumption (3.2). Let T ∈ (0,∞]. Then,
we have

(a) E1,μ(JT ) ↪→ Bμ(JT ). The embedding constant for the embedding 0E1,μ(JT ) ↪→
0Bμ(JT ) is independent of T .

(b) The trace operator γ0 ∈ L(E1,μ(JT ), Xγ,μ) has a bounded right inverse γ c
0 ∈

L(Xγ,μ,E1,μ(JT )).

(c) For each z0 ∈ Xγ,μ, there exists a function z∗ ∈ E1,μ(R+) such that z∗(0) = z0.
(d) Fμ(JT ) ↪→ BUC(J ; Yγ,μ) ↪→ BUC(J×∂�). Thus,Fμ(JT ) is a multiplication

algebra.

Proof. Although the properties listed above are known, for the reader’s convenience,
we include a proof nonetheless.

(a) By [28, Lemma 2.5], there exists an extension operator EJT ∈ L(E1,μ(JT ),

E1,μ(R+)). Moreover, one shows that E1,μ(R+) is continuously translation in-
variant. The first assertion follows now from [4, Proposition III.1.4.2].
By Proposition A.4, there exists an extension operator E0

JT
∈ L(0E1,μ(JT ),

0E1,μ(R+))whose norm is independent of T . The second assertion follows then
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from the commutativity of the diagram

0E1,μ(JT )
E0
JT−→ 0E1,μ(R+)

↓ ↓
0Bμ(JT )

RJ←− 0Bμ(R+),

where RJ denotes the restriction operator.
(b) Pick any z̃ = (̃u, F̃, θ̃ , m̃) ∈ Xγ,μ. Then, we define for z0 ∈ (u0, F0, θ0,m0) ∈

Xγ,μ

(γ c
0 z0)(t) :=

(
e−t (I−A1(θ̃ ))u0, e

−t (I−A2(θ̃))F0,R�e
−t (I−	)E�θ0, e

−t (ωI−A4(θ̃ ,m̃))m0

)
,

t ∈ J,

where D(Ai (̃z)) := Xi
1 for i ∈ {1, 2, 4}, with z̃ interpreted appropriately, and ω

is a sufficiently large positive constant, to be specified below.
Moreover, E� ∈ L(W 1+2μ−2/p

p (�),W 1+2μ−2/p
p (R3)) denotes an appropriate

extension operator,R� is the restriction operator, and	 is the Laplacian defined
on R3.

It follows from themaximal regularity result in Proposition 4.1 and [32, Propo-
sition 3.5.2(ii)] that, for each z̃ ∈ Xγ,μ, the operators ωI − Ai (̃z), i ∈ {1, 2, 4},
generate a strongly continuous exponentially stable analytic semigroup on Xi

0,
where ω = 1 for i ∈ {1, 2}, and ω is sufficiently large for i = 4. The assertion
follows then from [37, Theorem 1.14.5].

(c) This follows by choosing T = ∞ in (b) and setting z∗ = γ c
0 z0.

(d) The first embedding follows from [28, formula (4.10)], and the second one from
(3.2) and Sobolev embedding. �

4. Linearized problems

Before investigating the nonlinear system (3.7), we first study some related linear
problems. We start with the system

⎧
⎪⎨

⎪⎩

∂t z + A(̃z)z = f(t) in �,

B(̃z)z = g(t) on ∂�,

z(0) = z0 in �,

(4.1)

where z̃ ∈ Xγ,μ.

Proposition 4.1. Assume (2.1) and (3.2). Let z̃ ∈ Xγ,μ and T > 0 be given.

(a) For every (f,g, z0) ∈ E0,μ(JT )×Fμ(JT )× Xγ,μ, where g satisfies the compat-
ibility condition B(̃z)z0 = γ0g, the linear initial boundary value problem (4.1)
admits a unique solution z ∈ E1,μ(JT ). Moreover,

L(̃z) := (A(̃z),B(̃z), γ0) ∈ Lis(E1,μ(JT ),Dμ(̃z, T )),
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where Dμ(̃z, T ) := {(f,g, z0) ∈ E0,μ(JT ) × Fμ(JT ) × Xγ,μ : B(̃z)z0 = γ0g}.
(b) For each z̃ ∈ Xγ,μ and (f,g) ∈ E0,μ(JT ) × 0Fμ(JT ), let z =: S(̃z)(f,g) be the

(unique) solution of (4.1) with z0 = 0. Then,

[̃z �→ S(̃z)] ∈ C1(Xγ,μ,L(E0,μ(JT ) × 0Fμ(JT ), 0E1,μ(JT )). (4.2)

Moreover, given any T∗ > 0, the norm of S is uniform in T ∈ (0, T∗].
Proof. (a) The proof is based on the upper triangular structure of A and the results

in [32, Theorems 6.3.2, 6.3.3 and 7.3.2]. Let

f = ( f1, f2, f3, f4) ∈ E0,μ(JT ), g ∈ Fμ(JT ), z0 ∈ Xγ,μ

be given, where g satisfies the compatibility condition B(̃z)z0 = γ0g. We first
solve the equation for m:

∂tm + A4(θ̃ , m̃)m = f4 in �,

∂νm = 0 on ∂�,

m(0) = m0 in �,

and obtain a unique solution

m ∈ L p,μ(JT ;W 3
p(�;R3)) ∩ W 1

p,μ(JT ;W 1
p(�;R3))

by means of [32, Theorem 6.3.3]. In view of (3.3),

(C1(m̃)m, 0, C3(θ̃ , m̃)m, 0) ∈ E0,μ(JT ).

Therefore, the remaining equations of (4.1) can be rewritten as

∂t u + A1(θ̃)u = f1 − C1(m̃)m in �,

u = 0 on ∂�,

∂t F + A2(θ̃)F = f2 in �,

F = 0 on ∂�,

∂tθ + A3(̃z)θ = f3 − C3(θ̃ , m̃)m in �,

ν · tr∂�(K (̃z)∇θ) = g on ∂�,

(u(0), F(0), θ(0)) = (u0, F0, θ0) in �.

The existence anduniqueness of a solution then follows from [32,Theorems6.3.2
and 7.3.2].

(b) Lemma B.1 implies that

[̃z �→ (A(̃z),B(̃z))] ∈ C1(Xγ,μ,L(0E1,μ(JT ),E0,μ(JT ) × 0Fμ(JT ))).

The continuous differentiability of the map S follows from the following dia-
gram:
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z̃ �→ (∂t + A(̃z),B(̃z)) �→ (∂t + A(̃z),B(̃z))−1

Xγ,μ → L(0E1,μ(JT ),E0,μ(JT ) × 0Fμ(JT )) → L(E0,μ(JT ) × 0Fμ(JT ), 0E1,μ(JT )).

Fix T∗ > 0. For any 0 < T ≤ T∗, it follows from Proposition A.4 that there ex-
ists an extension map EJT : X(JT ) → X(JT∗) with X ∈ {E0,μ, 0E1,μ, 0Fμ}.
Moreover, the norm of EJT is uniform in T ∈ (0, T∗]. Given any (f,g) ∈
E0,μ(JT ) × 0Fμ(JT ), let (f̂, ĝ) = (EJT f, EJT g). Part (a) implies that one can

find a unique function ẑ ∈ 0E1,μ(JT∗) such that ẑ = S(f̂, ĝ). Put z = ẑ|[0,T ]. It
is clear that L(̃z)z = (f,g, 0). Direct computations yield

‖z‖E1,μ(JT ) ≤ ‖ẑ‖E1,μ(JT∗ ) ≤ C
(
‖f̂‖E0,μ(JT∗ ) + ‖ĝ‖0Fμ(JT∗ )

)

≤ C
(‖f‖E0,μ(JT ) + ‖g‖0Fμ(JT )

)

with a constant C that is independent of T ∈ (0, T∗]. Therefore, the norm of
S(̃z) is uniform in T ∈ (0, T∗]. �

Next, we consider the non-autonomous linear system
⎧
⎪⎨

⎪⎩

∂t z + A(z∗(t))z = f(t) in �,

B(z∗(t))z = g(t) on ∂�,

z(0) = z0 in �,

(4.3)

where z∗ ∈ E1,μ(JT ) is given.

Proposition 4.2. Assume (2.1) and (3.2). Let T > 0 and z∗ ∈ E1,μ(JT ) be given.
Then, the system (4.3) has a unique solution z = S(f,g, z0) ∈ E1,μ(JT ) if and only if

(f,g, z0) ∈ Dμ(z∗, T ) := {E0,μ(JT ) × Fμ(JT ) × Xγ,μ : B(z∗(0))z0 = g(0)}.
In this case, there is a constant c1 = c1(T ) > 0 such that

‖z‖E1,μ(JT ) ≤ c1(T )
(‖f‖E0,μ(JT ) + ‖g‖Fμ(JT ) + ‖z0‖Xγ,μ

)
. (4.4)

Given any T∗ > 0, the constant c1(T ) is uniform in T ∈ (0, T∗] in case g ∈ 0Fμ(JT )

and z0 = 0.

Proof. Let z∗ ∈ E1,μ(JT ) be given. In the following, we use the notation

A∗(t) := A(z∗(t)), B∗(t) := B(z∗(t)), S∗(t) := S(z∗(t)), K∗(t) := K (z∗(t))

for t ∈ [0, T ], where the solution operator S is defined in Proposition 4.1. By
Lemma 3.1(a), we know that z∗ ∈ C([0, T ]; Xγ,μ) and therefore, the set {z∗(s) :
s ∈ [0, T ]} ⊂ Xγ,μ is compact. We conclude from (4.2) that there exists a constant
M = M(T ) > 0 such that for ν ∈ {μ, 1}

‖S∗(s)‖L(E0,ν (JT )×0Fν (JT ),0E1,ν (JT )) ≤ M, s ∈ [0, T ]. (4.5)
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By Lemma B.1 and absolute continuity of the integral ‖tr∂�K‖Fμ(JT ), we can find a
partition

0 = t0 < t1 · · · < tn = T of [0, T ]
such that

max
t∈I j

‖z∗(t) − z∗(t j )‖Xγ,μ ≤ η,

‖tr∂�

(
K∗(·) − K∗(t j )

) ‖Fν (I j ) ≤ η
(4.6)

for a predetermined (fixed) number η, where I j = [t j , t j+1] for j = 0, . . . , n−1, and
where we set

ν :=
{

μ if j = 0,

1 if j = 1, . . . , n − 1.

Now it follows from (4.6), and Lemma A.5(i) that

‖A∗(·) − A∗(t j )‖L(0E1,ν (I j ),E0,ν (I j )) ≤ 1/(4M),

‖B∗(·) − B∗(t j )‖L(0E1,ν (I j ),0Fν (I j )) ≤ 1/(4M)
(4.7)

for j = 0, . . . , n − 1. In fact, we will first choose a partition point t1 so that the
properties of (4.7) hold true for I0 = [0, t1], and then partition the remaining interval
[t1, T ] if needed.

We will consider problem (4.3) on subintervals I j . In the first step, we deal with
the interval I0 = [t0, t1] = [0, t1]. In order to resolve the compatibility condition
B∗(0)z0 = g(0), we consider the linear problem

⎧
⎪⎨

⎪⎩

∂tw + A∗(0)w = f(t) in [0, t1] × �,

B∗(0)w = g(t) on [0, t1] × ∂�,

w(0) = z0 in �.

(4.8)

Let w ∈ E1,μ([0, t1]) be the unique solution of (4.8) (whose existence is guaranteed
by Proposition 4.1) and consider the system

⎧
⎪⎪⎨

⎪⎪⎩

∂t ẑ + A∗(t)ẑ = f̂(t) in [0, t1] × �,

B∗(t)ẑ = ĝ(t) on [0, t1] × ∂�,

ẑ(0) = 0 in �,

(4.9)

where

f̂(t) = −[A∗(t) − A∗(0)]w(t),

ĝ(t) = −[B∗(t) − B∗(0)]w(t).

Suppose ẑ ∈ E1,μ([0, t1]) is a solution of (4.9). Then, one verifies that the function
z1 = w + ẑ ∈ E1,μ([0, t1]) is a solution of (4.3) on the interval [0, t1].
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Hence, it remains to show that (4.9) has a (unique) solution. For this, we first note
that the necessary compatibility condition B∗(0)ẑ(0) = ĝ(0) is satisfied. To show the
solvability, we rewrite (4.9) as

⎧
⎪⎪⎨

⎪⎪⎩

∂t ẑ + A∗(0)ẑ + R1(t)ẑ = f̂(t) in [0, t1] × �,

B∗(0)ẑ + R2(t)ẑ = ĝ(t) on [0, t1] × ∂�,

ẑ(0) = 0 in �,

(4.10)

where

R1(t) = [A∗(t) − A∗(0)], R2(t) = [B∗(t) − B∗(0)], t ∈ [0, t1].
It follows from (4.5) and (4.7) that

‖(R1(·),R2(·))S∗(0)‖L(E0,μ([0,t1])×0Fμ([0,t1])) ≤ 1/2,

so that
[
I + (R1(·),R2(·))S∗(0)

] ∈ L(E0,μ([0, t1]) × 0Fμ([0, t1])) is invertible.
Hence,

ẑ = S∗(0)
[
I + (R1(·),R2(·))S∗(0)

]−1
(f̂, ĝ) ∈ 0E1,μ([0, t1])

is the (unique) solution of (4.10) on the interval [0, t1]. It follows that z1 := ẑ + w ∈
E1,μ([0, t1]) is a solution of (4.3) on the time interval [0, t1].
Assume that there exists another solution z̃ ∈ E1,μ([0, t1]) to (4.3) on [0, t1]. Then,

h = z− z̃ solves (4.10) with f̂ = 0 and ĝ = 0. The unique solvability of (4.10) implies
that h = 0. This proves the uniqueness of a solution on [0, t1].

We can now repeat the steps above for the interval [t1, t2]. In this case, we consider
the problem

⎧
⎪⎨

⎪⎩

∂t z + A∗(t1 + t)z = f(t1 + t) in [0, t2 − t1] × �,

B∗(t1 + t)z = g(t1 + t) on [0, t2 − t1] × ∂�,

z(0) = z1(t1) in �,

(4.11)

where z1 is the function obtained in step 1. As z1 solves (4.3) on the time interval
[0, t1], the compatibility condition B∗(t1)z(0) = B∗(t1)z1(t1) = g(t1) is satisfied.
Repeating the arguments of step 1, we obtain a unique solution z2 ∈ E1,1([0, t2 − t1])
of (4.11), since z1(t1) ∈ Xγ,1. Let

z(t) :=
{
z1(t), 0 ≤ t ≤ t1

z2(t − t1), t1 ≤ t ≤ t2.

As z1(t1) = z2(0) we conclude that z ∈ W 1
1 ((0, t2); X0). It is then easy to see that

z ∈ E1,μ([0, t2]).
We can now repeat the steps above to find a solution z ∈ E1,μ(JT ) of (4.3) on

[0, T ]. To show uniqueness, let

t∗ := sup{t ∈ [0, T ] : (4.3) has a unique solution on [0, t]}.
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By step 1, the set under consideration is nonempty and, therefore, t∗ is well-defined.
Suppose t∗ < T . We can then repeat step 2 from above to get a unique solution on
[t∗, t∗ + δ] for some δ. This leads to a contradiction, as the assumption t∗ < T would
imply that (at least) two different solutions with initial value z(t∗) exist.

Given T∗ > 0, when z0 = 0 and g ∈ 0Fμ(JT ), the uniformity of the constant C
in (4.4) with respect to T ∈ (0, T∗] can be shown in an analogous way to Proposi-
tion 4.1(b). �

For simplicity, we will introduce the following notation

A(z) := A(z)z and B(z) := B(z)z. (4.12)

It follows from Proposition B.3 that

A ∈ C1(E1,μ(JT ),E0,μ(JT )), A′(z∗)z = A(z∗)z + [A′(z∗)z]z∗,
B ∈ C1(E1,μ(JT ),Fμ(JT )), B′(z∗)z = B(z∗)z + [B′(z∗)z]z∗.

Next, we will study solvability of the linearized system
⎧
⎪⎨

⎪⎩

∂t z + A′(z∗(t))z − F′(z∗(t))z = f(t) in �,

B′(z∗(t))z = g(t) on ∂�,

z(0) = z0 in �,

(4.13)

where z∗ ∈ E1,μ(JT ) and F is defined in (3.6). We obtain the following result.

Proposition 4.3. Let z∗ ∈ E1,μ(JT ) be given. Then, the linearized system (4.13) has
a unique solution z = S(f,g, z0) ∈ E1,μ(JT ) if and only if

(f,g, z0) ∈ D̃μ(z∗, T ) : = {E0,μ(JT ) × Fμ(JT ) × Xγ,μ : B′(z∗(0))z0 = g(0)}.
In this case, there is a constant c2 = c2(T ) > 0 such that

‖z‖E1,μ(JT ) ≤ c2(T )
(‖f‖E0,μ(JT ) + ‖g‖Fμ(JT ) + ‖z0‖Xγ,μ

)
.

Given any T∗ > 0, the constant c2 is independent of T ∈ (0, T∗] in case g ∈ 0Fμ(JT )

and z0 = 0.

Proof. We observe that for z ∈ 0E1,ν(I ) and any interval I contained in [0, T ],
(∫

I
‖t1−ν [A′(z∗(t))z(t)]z∗(t)‖pX0

dt

)1/p
=
(∫

I
‖[A′(z∗(t))z(t)]t1−ν z∗(t)‖pX0

dt

)1/p

≤ M

(∫

I
‖t1−ν z∗(t)‖pX1

dt

)1/p
sup
t∈I

‖z(t)‖Xγ,μ

≤ CM

(∫

I
‖t1−ν z∗(t)‖pX1

dt

)1/p
‖z‖0E1,μ(I ),

where the constants C and M do not depend on the length of I , due to Lemma 3.1(a).
Here, ν = μ in case the interval I contains 0, and ν = 1 otherwise. By absolute
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continuity of the integral
∫

[0,T ] ‖t1−νz∗(t)‖p
X1

dt, we can, again, choose a partition
{I j : 0 ≤ j ≤ n − 1} of [0, T ] such that

(∫

I j
‖t1−νz∗(t)‖p

X1
dt

)1/p

≤ η,

where η > 0 is a given, predetermined (small) number.
Let z∗ = (u∗, F∗, θ∗,m∗) ∈ E1,μ(JT ) be given. Then [B′(z∗)z]z∗ = tr∂�[K ′(z∗)z]

∇θ∗. It follows from Lemma A.5(ii) that for any z = (zi )16i=1 ∈ 0E1,ν(I )

‖tr∂�([K ′(z∗)z]∇θ∗)‖0Fν (I ) ≤ C
16∑

i=1

‖tr∂�(∂i K (z∗)∇θ∗)‖0Fν (I )‖tr∂�zi‖0F1,ν (I ),

where the constant C is independent of the length of the interval I ⊂ [0, T ]. By
absolute continuity, for any given η > 0, there exists a partition {I j : 0 ≤ j ≤ n − 1}
of [0, T ] (which can be chosen to be compatible with the one for A′) such that

‖tr∂�([K ′(z∗)z]∇θ∗)‖0Fν (I j ) ≤ η ‖z‖0E1,ν (I j ), 0 ≤ j ≤ n − 1,

for some constant C that is independent of the length of the interval I j . See Proposi-
tion A.4 and [28, Theorems 4.2 and 4.5]. Finally, we note that the term F′(z∗(t))z is
of lower order in z and can therefore be handled by a standard perturbation argument.
The assertion follows now by similar arguments as in the proof of Proposition 4.2. �

5. Local well-posedness

Theorem 5.1. (Local existence and uniqueness for the abstract problem) Assume
(2.1) and (3.2).

(a) Let Mμ = {z ∈ Xγ,μ : B(z)z = 0}. Then for every z0 ∈ Mμ, there exists
T > 0 such that the nonlinear system (3.7) has a unique solution z ∈ E1,μ(JT ).
The solution can be continued to a maximal solution z = z(·, z0) on an interval
[0, T+(z0)).

(b) Let T < T+(z0). Then, there exists a number ρ > 0 such that the system
(3.7) has a unique solution z(·, w0) ∈ E1,μ(JT ) for each initial value w0 ∈
Mμ ∩ BXγ,μ(z0, ρ). Moreover, the mapping

[w0 �→ z(·, w0)] : Mμ ∩ BXγ,μ(z0, ρ) → E1,μ(JT )

is locally Lipschitz continuous. Hence, (3.7) generates a (locally) Lipschitz con-
tinuous semiflow onMμ.

(c) Let T < T+(z0) and z = z(·, z0) be the (unique) solution of (3.7). Then,
t z ∈ W 2

p,μ(JT ; X0) ∩ W 1
p,μ(JT ; X1).

Moreover, z ∈ C1((0, T ]; Xγ,μ).
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Proof. In this proof, we will follow the ideas in [22, Theorem 14] and [26, Proposi-
tion 4.3.2].

(a) Fix z∗ ∈ E1,μ(R+)with z∗(0) = z0,whose existence is guaranteedbyLemma3.1(b).
We put

A∗(t)z = A′(z∗(t))z − F′(z∗(t))z,
B∗(t)z = B′(z∗(t))z,

where the functions (A,B) are defined in (4.12), and consider the linear problem
⎧
⎪⎨

⎪⎩

∂t z + A∗(t)z = A′(z∗)z∗ − A(z∗) + F(z∗) − F′(z∗)z∗ in �,

B∗(t)z = B′(z∗)z∗ − B(z∗) on ∂�,

z(0) = z0 in �.

(5.1)

Note that the compatibility condition

B∗(0)z0 = B′(z0)z0 − B(z0)

is satisfied, as B(z0) = B(z0)z0 = 0 by assumption. Therefore, Proposition 4.3
implies that for any T0 > 0, (5.1) has a unique solution w ∈ E1,μ(JT0). Fix
T0, R0 > 0. For every T ∈ (0, T0] and R ∈ (0, R0], we define a closed set in
E1,μ(JT ) by

�(T, R) = {z ∈ E1,μ(JT ) : ‖z − w‖E1,μ(JT ) ≤ R, γ0z = z0}.
Observe that, by [28, Theorems 4.2 and 4.5], there exists some M > 0 such that
for all T ∈ (0, T0] and R ∈ (0, R0] and every ẑ ∈ �(T, R), it holds that

‖tr∂� ẑ‖Fμ(JT ), ‖tr∂�∇ ẑ‖Fμ(JT ), ‖ẑ‖E1,μ(JT ), ‖ẑ‖Bμ(JT ) ≤ M. (5.2)

Given any ẑ ∈ �(T, R), we consider the linear problem
⎧
⎪⎨

⎪⎩

∂t z + A∗(t)z = A′(z∗)ẑ − A(ẑ) + F(ẑ) − F′(z∗)ẑ in �,

B∗(t)z = B′(z∗)ẑ − B(ẑ) on ∂�,

z(0) = z0 in �.

(5.3)

As B(z0) = B(z0)z0 = 0, the compatibility condition

B∗(0)z0 = B′(z0)z0 − B(z0)

is satisfied, and we can infer from Proposition 4.3 that (5.3) has a unique solution
z = T (ẑ) ∈ E1,μ(JT ).
Then, it is clear that z ∈ �(T, R) solves (3.7) iff it is a fixed point of T in

�(T, R). Note that v = T (ẑ) − w solves
⎧
⎪⎨

⎪⎩

∂tv + A∗(t)v = F∗(ẑ) in �,

B∗(t)v = G∗(ẑ) on ∂�,

v(0) = 0 in �,
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where

F∗(ẑ) = −(A(ẑ) − A(z∗) − A′(z∗)(ẑ − z∗)
)+ F(ẑ) − F(z∗) − F′(z∗)(ẑ − z∗),

G∗(ẑ) = −(B(ẑ) − B(z∗) − B′(z∗)(ẑ − z∗)
)
.

In view of Proposition 4.3, there exits a constant C > 0, which is independent
of T ∈ (0, T0], such that

‖T (ẑ) − w‖E1,μ(JT ) ≤ C(‖A(ẑ) − A(z∗) − A′(z∗)(ẑ − z∗)‖E0,μ(JT )

+ ‖F(ẑ) − F(z∗) − F′(z∗)(ẑ − z∗)‖E0,μ(JT )

+ ‖B(ẑ) − B(z∗) − B′(z∗)(ẑ − z∗)‖Fμ(JT )),

where we have used the fact that

B(ẑ) − B(z∗) − B′(z∗)(ẑ − z∗) ∈ 0Fμ(JT ).

Using (5.2) and (B.5), one verifies that ‖T (ẑ) − w‖E1,μ(JT ) ≤ R, provided T
and R are chosen small enough. This shows that T maps �(T, R) into itself.
To show that T : �(T, R) → �(T, R) is a strict contraction, we pick functions
ẑ, z ∈ �(T, R). Then, we obtain

‖T (ẑ) − T (z)‖E1,μ(JT ) ≤ C(‖A(ẑ) − A(z) − A′(z∗)(ẑ − z)‖E0,μ(JT )

+ ‖F(ẑ) − F(z) − F′(z∗)(ẑ − z)‖E0,μ(JT )

+ ‖B(ẑ) − B(z) − B′(z∗)(ẑ − z)‖Fμ(JT ))

for some constant C that is independent of T ∈ (0, T0]. Employing (5.2) and
(B.5), (B.6), one verifies that

‖T (ẑ) − T (z)‖E1,μ(JT ) ≤ 1

2
‖z − ẑ‖E1,μ(JT ),

provided T and R are chosen sufficiently small.
The contraction mapping principle implies the existence of a unique solution

z ∈ �(T, R) to (3.7) on the time interval [0, T ]. A standard argument then yields
that z is also the unique solution in E1,μ(JT ).
The existence of a maximal interval of existence [0, T+(z0)) can be obtained

in a standard way as in [32, Corollary 5.1.2].
(b) Pick an arbitrary T ∈ (0, T+(z0)) and let z = z(·, z0) be the (unique) solution of

(3.7) obtained in part (a). Then, w ∈ E1,μ(JT ) is a solution of (3.7) with initial
value w0 ∈ Mμ iff w = z + v, where v ∈ E1,μ(JT ) solves the system

⎧
⎪⎨

⎪⎩

∂tv + A0(t)v = F(v(t)) in �,

B0(t)v = G(v(t)) on ∂�,

v(0) = v0 = w0 − z0 in �

(5.4)
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on [0, T ], with
A0(t)v = A′(z(t))v − F′(z(t))v = A(z(t))v + [A′(z(t))v]z(t) − F′(z(t))v,

B0(t)v = B′(z(t))v = B(z(t))v + [B′(z(t))v]z(t),
F(v(t)) = −(A(z(t) + v(t)) − A(z(t)) − A′(z(t))v(t)

)+ F(z(t) + v(t)) − F(z(t))

− F′(z(t))v(t),

G(v(t)) = −(B(z(t) + v(t)) − B(z(t)) − B′(z(t))v(t)
)
.

It follows from Proposition B.3 that

F ∈ C1(E1,μ(JT ),E0,μ(JT )) and G ∈ C1(E1,μ(JT ),Fμ(JT )). (5.5)

Easy computations show that

F(0) = 0, G(0) = 0, F
′(0) = 0, G

′(0) = 0. (5.6)

Note that the compatibility condition

B0(0)v(0) := B′(z0)v(0) = G(v(0)) (5.7)

is satisfied, as B(z0) = B(w0) = 0 by assumption. Let

X0
γ,μ := {ẑ0 ∈ Xγ,μ : B′(z0)ẑ0 = 0}.

We then introduce the map F : X0
γ,μ × E1,μ(JT ) → E1,μ(JT ), defined by

F(ẑ0, v̂) = v̂ − S(F(v̂),G(v̂), ẑ0 + R(z0)G(v̂(0))),

where S is the solution operator defined in Proposition 4.3 andR(z0) : Yγ,μ →
Xγ,μ is the bounded right inverse of B′(z0) asserted by Lemma B.3. Observe
that F(0, 0) = 0 and the compatibility condition

B′(z0)
(
ẑ0 + R(z0)G(v̂(0))

) = G(v̂(0))

is satisfied for each v ∈ E1,μ(JT ). It follows from (5.5) that

F ∈ C1(X0
γ,μ × E1,μ(JT ),E1,μ(JT ))

and from (5.6) that ∂2F(0, 0) ∈ Lis(E1,μ(JT )). The implicit function theorem
then implies that there exist some r > 0 and � ∈ C1(BX0

γ,μ
(0, r),E1,μ(JT ))

such that v̂ = �(ẑ0) with ẑ0 ∈ BX0
γ,μ

(0, r) iff F(ẑ0, v̂) = 0, or equivalently, v̂
solves

⎧
⎪⎨

⎪⎩

∂t v̂ + A0(t)v̂ = F(v̂(t)) in �,

B0(t)v̂ = G(v̂(t)) on ∂�,

v̂(0) = ẑ0 + R(z0)G(v̂(0)) in �.



J. Evol. Equ. On a thermodynamically consistent model Page 25 of 51     9 

We define P(z0) : Xγ,μ → X0
γ,μ by P(z0)̃z = (I − R(z0)B′(z0))̃z. For suffi-

ciently small ρ > 0, and w0 ∈ Mμ∩ ∈ BXγ,μ(z0, ρ), we choose

ẑ0 = P(z0)v0 ∈ BX0
γ,μ

(0, r), where v0 = w0 − z0.

In view of (5.7), it holds that

v0 = ẑ0 + R(z0)B′(z0)v0 = ẑ0 + R(z0)G(v(0)).

Therefore, v and v̂ solve the same system of equations. We conclude that v :=
�(P(z0)(w0 − z0)) is the unique solution of (5.4) on [0, T ] with initial value
v0. Hence, w = z + �(P(z0)(w0 − z0)) is the (unique) solution to (3.7) with
initial value w0 on [0, T ]. Setting z(·, w0) = z(·, z0) + �(P(z0)(w0 − z0)), we
can infer that the mapping

[w0 �→ z(·, w0)] : Mμ ∩ BXγ,μ(z0, ρ) → E1,μ(JT )

is Lipschitz continuous.
(c) Fix T ∈ (0, T+(z0)) and ε ∈ (0, 1) so small that (1 + ε)T < T+(z0). Let z ∈

E1,μ(JT ) be the unique solution of (3.7) with initial value z0. Let zλ(t) = z(λt).
Then, v = zλ solves

⎧
⎪⎨

⎪⎩

∂tv + A0(t)v = F(λ, v(t)) in �,

B0(t)v = G(v(t)) on ∂�,

v(0) = z0 in �

(5.8)

on [0, T ], where A0 and B0 are defined as in (5.4) and

F(λ, v(t)) = −(λA(v(t))) − A′(z(t))v(t)
)+ λF(v(t)) − F′(z(t))v(t),

G(v(t)) = −(B(v(t)) − B′(z(t)v(t)
)
,

with (A,B) defined in (4.12). As F(1, v) = −(A(v)−A′(z)v
)+F(v)−F′(z)v,

one readily verifies that

∂2F(1, z) = 0, G′(z) = 0.

Similar to part (b), we define F0 : (1 − ε, 1 + ε) × E1,μ(JT ) → E1,μ(JT ) by

F0(λ, v) = v − S(F(λ, v),G(v), ẑ0 + R(z0)G(v(0))),

where ẑ0 = z0 −R(z0)B′(z0)z0 ∈ X0
γ,μ. Note that the compatibility condition

B′(z0)(ẑ0 + R(z0)G(v(0))) = G(v(0))

is again satisfied. We have F0(1, z) = 0 and ∂2F0(1, z) ∈ Lis(E1,μ(JT )).
Therefore, the implicit function theorem implies that there exist δ ∈ (0, ε) and
�0 ∈ C1((1 − δ, 1 + δ),E1,μ(JT )) such that v = �0(λ) iff v solves

⎧
⎪⎨

⎪⎩

∂tv + A0(t)v = F(λ, v(t)) in �,

sB0(t)v = G(v(t)) on∂�,

v(0) = z0 − R(z0)B′(z0)z0 + R(z0)G(v(0)) in �.
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FromF0(1, z) = 0, we infer that z = �0(1). We want to show that �0(λ) = zλ.
To this end, notice that z0(λ) := γ0�0(λ) satisfies

z0(λ) = z0 − R(z0)B′(z0)z0 + R(z0)G(z0(λ))

= z0 − R(z0)
(
B(z0(λ) − B′(z0)(z0(λ) − z0)

)
.

By using the fact that B(z0) = B(z0)z0 = 0, we further obtain

z0(λ) − z0 = −R(z0)
(
B(z0(λ)) − B(z0) − B′(z0)(z0(λ) − z0))

)
.

We can thus conclude that

‖z0(λ) − z0‖Xγ,μ ≤ �(‖z0(λ) − z0‖Xγ,μ)‖z0(λ) − z0‖Xγ,μ

≤ �(‖�0(λ) − �0(1)‖E1,μ(JT ))‖z0(λ) − z0‖Xγ,μ .

By choosing δ so small that

sup
λ∈(1−δ,1+δ)

�(‖�0(λ) − �0(1)‖E1,μ(JT )) ≤ 1/2,

we have z0(λ) = z0 for all λ ∈ (1−δ, 1+δ). Thus,�0(λ) solves (5.8) and hence
�0(λ) = zλ. The differentiability of �0 implies that � ′

0(1) = t∂t z ∈ E1,μ(JT ).
Therefore, ∂t (t z) = z + t∂t z ∈ E1,μ(JT ). Then, the asserted the regularity of z
follows. �

In the following, we will discuss the remaining issues concerning the pressure
function π and the constraint |m| = 1.

Proposition 5.2. Given T > 0, the following statements are equivalent:

(a) (3.1) has a solution (u, F, θ,m, π) ∈ E1,μ(JT ) × L p,μ(JT ; Ḣ1
p(�)).

(b) (3.7) has a solution (u, F, θ,m) ∈ E1,μ(JT ).

Proof. The implication (a)⇒(b) follows by just applying PH to both sides of the u
equation in (3.1). We are left to show (b)⇒(a). Suppose z = (u, F, θ,m) ∈ E1,μ(JT )

solves (3.7). Let

v = −u · ∇u + ∇ · (µ(θ)∇u) − ∇ · (∇m � ∇m) + ∇ · (FF�).

Let π be an W 1
p solution to 	π = ∇ · v in � with ∂νπ = v · ν on ∂�, i.e.,

(∇π(t)|∇φ) = (v(t)|∇φ), ∀φ ∈ Ḣ1
p′(�), p′ = p/(p − 1).

From standard elliptic theory we conclude that π ∈ L p,μ(JT ; Ḣ1
p(�)) and PHv(t) =

v(t) − ∇π(t). Then by (3.7), we have

∂t u + ∇π − v = ∂t u − PHv = 0.

Hence, (u, F, θ,m, π) solves (3.1)1. �
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Now, we are in a position to state themain theorem concerning local well-posedness
of (3.1). To this end, we define the state manifold of (3.1) by

SMμ := {z = (u, F, θ,m) ∈ Xγ,μ : θ > 0, |m| = 1, B(z)z = 0}.
Theorem 5.3. (Local well-posedness of (3.1)) Assume (2.1) and (3.2).

(a) Suppose that z0 = (u0, F0, θ0,m0) ∈ Mμ. Then, there exists a number T > 0
such that (3.1) has a unique solution

z̃(·, z0) = (u, F, θ,m, π) ∈ E1,μ(JT ) × L p,μ(JT ; Ḣ1
q (�)).

Each solution can be extended to a maximal existence interval [0, T+(z0)). If,
in addition, |m0| ≡ 1, then the solution also satisfies

|m(t)| ≡ 1, t ∈ [0, T+(z0)).

Moreover, it holds that

θ(t, x) ≥ min
�

θ0(x), (t, x) ∈ [0, T+(z0)) × �.

(b) Let T < T+(z0). Then, there exists a number ρ > 0 such that for every w0 ∈
SMμ ∩ BXγ,μ(z0, ρ), the unique solution z̃(·, w0) of (3.1) with initial condition
w0 belongs to E1,μ(JT ) × L p,μ(JT ; Ḣ1

q (�)). Moreover, the mapping

[w0 �→ z̃(·, w0)] : SMμ ∩ BXγ,μ(z0, ρ) → E1,μ(JT ) × L p,μ(JT ; Ḣ1
q (�))

is locally Lipschitz continuous. Hence, the system (3.1) generates a (Lipschitz)
continuous semiflow on SMμ.

Proof. (a) The fact that |m(t)| = 1 up to T+(z0), provided |m0| = 1, follows from a
parabolic maximum principle (c.f. [10, Theorem 2.5]). By (3.3), θ0 ∈ C1(�), so
that min� θ0(x) exists. For (t, x) ∈ [0, T+(z0))×�, letψ(t, x) = min� θ0(x)−
θ(t, x). Then, we can derive from (3.1) that ψ solves

∂tψ + u · ∇ψ ≤ ∇ · (K (z)∇ψ) in �,

ν · tr∂�(K (z)∇ψ) = 0 on ∂�,

ψ(0, x) ≤ 0 in �.

(5.9)

Multiplying both sides of (5.9)1 byψ+ = max{ψ, 0} and integrating over�, we
can show that

∂t

(
‖ψ+‖22

2

)

+ c‖∇ψ+‖22 ≤ ∂t

(
‖ψ+‖22

2

)

+ (K (z)∇ψ+|∇ψ+)� ≤ 0. (5.10)

In fact, we can compute

(∂tψ |ψ+)� = (∂tψ+|ψ+)� = ∂t
‖ψ+‖22

2
,
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(u · ∇ψ |ψ+)� = (u · ∇ψ+|ψ+)� =
∫

�

u · ∇ |ψ+|2
2

dx = 0,

(∇ · (K (z)∇ψ)|ψ+)� = −
∫

�

(K (z)∇ψ) · ∇ψ+ dx = −(K (z)∇ψ+|∇ψ+)�.

Integrating (5.10) with respect to t , and using the fact that ψ+(0, x) = 0, we
conclude that ‖ψ+(t)‖22 = 0 for t ∈ [0, T+(z0)). Hence, ψ+(t, x) = 0 for
(t, x) ∈ [0, T+(z0)) × �.

(b) This part follows directly from Theorem 5.1(b), the proof of Proposition 5.2 and
the fact that

[z �→(−u · ∇u + ∇ · (µ(θ)∇u) − ∇ · (∇m � ∇m) + ∇ · (FF�))]
∈ C1(E1,μ(JT ), L p,μ(JT ; L p(�;R3))).

�

6. Stability and long-time behavior

In this section, we will study global existence and stability of solutions to (1.1). The
next theorem establishes the long-time behavior of solutions.

Theorem 6.1. Assume (2.1), (3.2), |m0| = 1, and the positivity condition θ0 > 0.
Let z = z(·, z0) be the solution of (1.1), defined on its maximal interval of existence
[0, T+(z0)). Then, the following properties hold.

(a) We have the following alternatives:

(i) T+(z0) = ∞, that is, z is a global solution;
(ii) lim

t→T+(z0)
z(t) does not exist in Xγ,μ.

(b) Suppose

sup
t∈[δ,T+(z0))

‖z(t)‖Xγ,μ
< ∞ for some δ ∈ (0, T+(z0)) and some μ ∈ (μ, 1].

Then, z exists globally and dist(z(t), E) → 0 in Xγ,1 as t → ∞.

Proof. (a) We will prove the assertion by following the strategy in [32, Corol-
lary 5.1.2]. Assume that T+(z0) < ∞ and z(·, z0) converges to some z1 in
Xγ,μ as t → T+(z0). Lemma B.1 implies that B(z1)z1 = 0. Combining Theo-
rem 5.3(a) and the assumption, we have that there exists an η > 0 depending on
min� θ0 such that

distXγ,μ(z(t), ∂Vμ) ≥ η, for all t ∈ [0, T+(z0)), (6.1)

where Vμ = {z = (u, F, θ,m) ∈ Xγ,μ : θ > 0}. We thus infer that z1 ∈ SMμ.
Then, the orbit V := {z(t) : 0 ≤ t < T+(z0)} is relatively compact in SMμ.
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It follows from Theorem 5.3(b) and a compactness argument that there exists
T0 > 0 such that for each s ∈ [0, T+(z0)), system (3.1) with initial value z(s) has
a unique solution in E1,μ(JT0). Fixing s0 ∈ (T+(z0)− T0, T+(z0)), system (3.1)
with initial value z(s0) has a solution v ∈ E1,1(JT0), which, by uniqueness,
coincides with z(s0 + · , z0) on [s0, T+(z0)). In view of Proposition 5.2, the
solution z̃(·, z0) of (1.1) can be extended beyond T+(z0), a contradiction.

(b) We will prove the assertion by following the strategy in [32, Section 5.7]. By
Theorem 5.3(b), the system (3.1) defines a local semiflow on SMμ. From the
assumption and the compact embedding

Xγ,μ ↪→ Xγ,μ,

we infer that the orbit V := {z(t) : 0 ≤ t < T+(z0)} is relatively compact in
SMμ. Denote the closure of V in Xγ,μ by V . It follows from a similar argument
as in part (a) that there exist a number T0 > 0 and an open neighborhood U of V
inMμ such that for every z̃0 ∈ U , (3.7) admits a unique solution z̃ ∈ E1,μ(JT0).
Moreover, the solution map G1 : U → E1,μ(JT0) is continuous. This implies
that for any t ∈ [0, T+(z0)), the solution of (3.7) with initial condition z(t) exists
on the interval [t, t +T0], which further shows that T+(z0) = ∞. Now it follows
from Proposition 5.2 that the solution to (1.1) is global.

As above, one sees that (3.1) also defines a local semiflow on SM1, equipped
with the metric induced by Xγ,1. It follows from the inequality

‖z(T0)‖Xγ,1 ≤ ‖z‖C([T0/2,T0];Xγ,1) ≤ C(T0)‖z‖E1,1([T0/2,T0])
≤ C(T0)(T0/2)

μ−1‖z‖E1,μ(JT0 )

that the map G2 : E1,μ(JT0) → Xγ,1 : z �→ z(T0) is continuous. This implies
that the composition map G = G2 ◦ G1 : U → Xγ,1 : z �→ G1(z)(T0) is
continuous. We thus infer that the orbit {z(t)}t≥T0 is relatively compact in SM1

because the continuous image of a relatively compact set is again relatively
compact. Recall that the definition of ω-limit set of (3.7) is given by

ω(z0) := {w ∈ Xγ,1 : ∃tn → ∞ s.t. ‖z(tn) − w‖Xγ,1 = 0 as n → ∞}.
By [1, Theorem 17.2], ω(z0) is nonempty, compact, connected in SM1 and

lim
t→∞ distXγ,1(z(t), ω(z0)) = 0. (6.2)

Now following a similar computation as in [10, Proposition 4.1], we can show
that −N is a strict Lyapunov functional for (3.1). Therefore, ω(z0) ⊂ E . Com-
bining with (6.2), this implies

lim
t→∞ distXγ,1(z(t), E) = 0.

�
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Our last result is about the qualitative behavior of solutions near constant equilibria.
Consider the set of constant equilibria of (3.7):

Ec := {0} × {03} × R+ × R
3

which is a subset of E , the set of equilibria. Let z∗ ∈ Ec be given. Then, one readily
verifies that

([A′(z∗)z]z∗,F′(z∗)z, [B′(z∗)z]z∗) = (0, 0, 0), z ∈ X1. (6.3)

Therefore, the linearization of (3.7) at z∗ ∈ Ec is given by

A∗z := A(z∗)z

=

⎡

⎢
⎢
⎣

−µ(θ∗)PH	u 0 0 0
0 −κ(θ∗)	F 0 0
0 0 −K (z∗) : ∇2θ 0
0 0 0 (β(θ∗)M(m∗) − α(θ∗)I3)	m

⎤

⎥
⎥
⎦ ,

B∗z = ν · tr∂�(K (z∗)∇θ), z = (u, F, θ,m).

Note that (A∗,B∗) ∈ L(X1, X0 × Y1), where Y1 = W 1−1/p
p (∂�). Hence, A0 :=

A∗|N (B∗) is well-defined, where N (B∗) is the null space of B∗.
The next result will be important for proving stability of constant equilibria.

Proposition 6.2. Each constant equilibrium z∗ ∈ Ec is normally stable.

Proof. By definition of normal stability, we need to show that

(i) near z∗, Ec is a C1-manifold in X1 of finite dimension,
(ii) the tangent space of Ec at z∗ is isomorphic to N (A0),
(iii) 0 is a semi-simple eigenvalue of A0, i.e., X0 = N (A0) ⊕ R(A0),
(iv) σ(A0) \ {0} ⊂ {z ∈ C : Rez > 0}.
We immediately see that (i) is satisfied, as Ec is a linear space of dimension 4.

Suppose z = (u, F, θ,m) is an eigenvector of A0 subject to an eigenvalue λ ∈ C,
i.e., A0z = λz. In other words, B∗z = 0 on ∂�, and A∗z = λz in �. Taking the inner
product of the later identity with z and using integration by parts, we can derive

Re λ‖z‖22 = µ(θ∗)‖∇u‖22 + κ(θ∗)‖∇F‖22 + Re (K (z∗)∇θ |∇θ)� + α(θ∗)‖∇m‖22
≥ µ‖∇u‖22 + κ‖∇F‖22 + c‖∇θ‖22 + α‖∇m‖22,

where we use assumption (2.1) and the fact that Re (M(m∗)	m|m)� = 0 (see [10,
Section 3]). Hence, Re λ ≥ 0. Furthermore, when Re λ = 0, we get that z ∈ {0} ×
{03} × R × R

3, thus σ(A0) ∩ iR = {0} and N (A0) = {0} × {03} × R × R
3. This

shows that (iii) and (iv) hold true.
Finally, we show that 0 is a semi-simple eigenvalue. Since A0 has compact resolvent,

it suffices to show that N (A0) = N (A2
0). Since N (A0) ⊂ N (A2

0), we just need to show
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N (A2
0) ⊂ N (A0). For w = (v, J, ϑ, n) ∈ N (A2

0), let z = (0, 0, θ,m) ∈ N (A0) such
that A0w = z. Then, we can compute

‖z‖22 = (A0w|z)� = (−K (z∗) : ∇2ϑ |θ)� + ((β(θ∗)M(m∗) − α(θ∗)I3)	n|m)� = 0,

where we use the fact that θ,m are constants in N (A0) and B∗w = 0 on ∂�. Hence,
A0w = z = 0 and w ∈ N (A0). This yields that 0 is a semi-simple eigenvalue.
Finally, it follows from [33, Remark 2.2] that all equilibria near z∗ are contained in

a C1 manifold of dimension 4. �

By adapting the proof of the generalized principle of linearized stability provided
in [32, Section 5.3], we can obtain the following stability property of Ec.

Theorem 6.3. Assume (2.1) and (3.2). Then, each equilibrium z∗ ∈ Ec is stable in
Xγ,μ. Moreover, there exists δ > 0 such that if ‖z0 − z∗‖Xγ,μ ≤ δ, then the solution
z of (3.1) with initial value z0 exists globally and converges to some z∞ ∈ Ec at an
exponential rate in Xγ,1.

Remark 6.4. We do not know of physical or mathematical principles that would help
in characterizing the equilibrium state z∞ ∈ Ec.

Proof of Theorem 6.4 It will be convenient to center (3.7) around z∗, by setting z =
z − z∗. Then, (3.7) can be rewritten as

⎧
⎪⎨

⎪⎩

∂t z + A∗z = G(z) in �,

B∗z = H(z) on ∂�,

z(0) = z0 = z0 − z∗ in �,

(6.4)

where

G(z) = −(A(z∗ + z)(z∗ + z) − A(z∗)z
)+ F(z∗ + z)

= −((A(z∗ + z) − A(z∗))(z∗ + z) − [A′(z∗)z]z∗
)+ F(z∗ + z) − F(z∗)

− F′(z∗)z
H(z) = −(B(z∗ + z)(z∗ + z) − B(z∗)z

)

= −((B(z∗ + z) − B(z∗))(z∗ + z) − [B′(z∗)z]z∗
)
.

Here, we used (6.3) and the relations (A(z∗)z∗,F(z∗),B(z∗)z∗) = (0, 0, 0) for the
second line in the expressions of G(z) and H(z), respectively.
Theorem 5.3 shows that (6.4) has a unique solution z on some maximal interval of

existence [0, T+).
In the following, we use the notation

Xc
0 = N (A0) = {0} × {03} × R+ × R

3, Xs
0 = R(A0).

We know from Proposition 6.2 that X0 = Xc
0 ⊕ Xs

0. Let P
c be the projection from X0

onto Xc
0, and P

s the projection onto Xs
0. Then, we set X

s
j = Ps X j , j ∈ {0, 1, (γ, μ)}.



    9 Page 32 of 51 H. Du et al. J. Evol. Equ.

We point out that Xs
j = X j ∩ Xs

0 and PcX j
.= Xc. Therefore, in the sequel, we

will simply be using Xc, equipped with the norm induced by X0. As Xc is finite
dimensional, the projections Pc and Ps also provide the direct decomposition X j =
Xc ⊕ Xs

j .
Following the arguments in parts (b) and (c) of the proof of [32, Theorem 5.3.1],

near z∗, we decompose z as

z = x + y := Pcz + Ps z.

Based on these notations, we define the normal form of (6.4) as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tx = T (x, y) in �,

∂ty + PsA∗Psy = R(x, y) in �,

B∗y = S(x, y) on ∂�,

x(0) = x0, y(0) = y0 in �.

(6.5)

Here, x0 = Pcz0, y0 = Ps z0 and

T (x, y) = Pc (G(x + y) − G(x)) − PcA∗y,
R(x, y) = Ps (G(x + y) − G(x)) ,

S(x, y) = H(x + y) − H(x).

We note that G(x) = 0 for x ∈ Xc. We, nevertheless, include this term for reasons of
consistency. It is clear that T (x, 0) = R(x, 0) = S(x, 0) = 0. �
Before proceeding with the proof, we list a result for a linear version of system (6.5)

that will be needed in the sequel. It reads as follows.

Lemma 6.5. Let T > 0. Then, the linear problem

∂t y + PsA∗Ps y = f(t) in �,

B∗y = g(t) on ∂�,

y(0) = y0 in �

admits for each initial value y0 = (u0, F0, θ0,m0) ∈ Xs
γ,μ and each function

(f,g) ∈ L p,μ(JT ; Xs
0) × Fμ(JT )

satisfying the compatibility condition B∗y0 = g(0) a unique solution

y ∈ W 1
p,μ(JT ; Xs

0) ∩ L p,μ(JT ; Xs
1).

Moreover, there exists a constant M0, which is independent of T ∈ (0,∞), such that

‖y‖E1,μ(JT ) ≤ M0
(‖f‖E0,μ(JT ) + ‖g‖Fμ(JT ) + ‖y0‖Xγ,μ

)
.
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Proof. The proof can be reproduced line by line by following the proof of [33, Propo-
sition 3.3].
We will now continue with the proof of Theorem 6.3. Suppose that

x0 ∈ BXc (0, δ) and y0 ∈ BXs
γ,μ

(0, δ) (6.6)

for a number δ > 0 to be determined later. We already know that (6.4) has a solution z
with initial value z0 = x0+y0 onmaximal interval of existence [0, T+), or equivalently,
(6.5) has a solution (x, y) on [0, T+).
As in [32, Theorem 5.3.1], we can show that there exists some constant C1 > 0

such that

‖T (x, y)‖X0 ≤ C1‖y‖X1 ,

‖R(x, y)‖X0 ≤ �(r)‖y‖X1

(6.7)

for all x ∈ BXc (0, r) and y ∈ BXs
γ,μ

(0, r) ∩ X1 with sufficiently small r > 0. We
recall here that �(r) → 0+ as r → 0+. Define

ω0 = 1

2
inf{Reλ : λ ∈ σ(A∗) \ {0}}.

For any ω ∈ (0, ω0), we define the map eω : L1,loc(R+) → L1,loc(R+) : u �→
eωt u(t). For arbitrary T ∈ (0, T+), we will establish an estimate of the form

‖eωS(x, y)‖Fμ(JT ) ≤ �(r)‖eωy‖E1,μ(JT ), (6.8)

whenever ‖x(t)‖X0 , ‖(x+y)(t)‖Xγ,μ ≤ r , t ∈ [0, T ]. Let K̂ (z) = K (z∗+z)−K (z∗).
For zi ∈ Xγ,μ, i = 1, 2, we have the estimates

‖K̂ (z1)‖W 2μ−2/p
p (�)

≤ �(‖z∗‖Xγ,μ + ‖z1‖Xγ,μ)‖z1‖W 2μ−2/p
p (�)

,

|(K̂ (z1) − K̂ (z2))(x)| ≤ �(‖z∗‖Xγ,μ +
∑

i=1,2

‖zi‖Xγ,μ)|(z1 − z2)(x)|, x ∈ �,

(6.9)

in view of Lemma B.1 and a mean value theorem argument as in Lemma B.2.
We set x = (u1, F1, θ1,m1) and y = (u2, F2, θ2,m2) for x ∈ Xc and y ∈ Xs

γ,μ. It
holds that

S(x, y) = ν · tr∂�(K̂ (x + y)∇θ2).

Note that, in the above computations, we have used the fact that ∇θ1 = 0, which
follows from the fact that x ∈ Xc = {0} × {03} × R × R

3. We start with the L p,μ-
estimate, which reads

‖eωS(x, y)‖L p,μ(JT ;L p(∂�))

≤ �(r)‖eωtr∂�(∇θ2)‖L p,μ(JT ;L p(∂�)) ≤ �(r)‖eωy‖E1,μ(JT ). (6.10)
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In (6.10), we have used (6.9) and the assumption ‖x + y‖Xγ,μ ≤ r . ‖eωS(x, y)

‖
L p,μ(JT ;W 1−1/p

p (∂�))
can be estimated in a similar way by observing thatW 1−1/p

p (∂�)

is a Banach algebra, as p > 5 > 3. Let r = 1/2 − 1/2p. It follows from Lemma A.4
that

[eωS(x, y)]pWr
p,μ(JT ;L p(∂�))

≤ C‖eωS(x, y)‖p
L p,μ(JT ;L p(∂�))

+ C
∫∫

B1
T

∥
∥s1−μeωs[K̂ (z(t)) − K̂ (z(s))]∇θ2(t)

∥
∥p
L p(∂�)

(t − s)1+rp
ds dt (6.11)

+ C
∫∫

B1
T

∥
∥s1−μeωs K̂ (z(s))∇ [θ2(t) − θ2(s)]

∥
∥p
L p(∂�)

(t − s)1+rp
ds dt. (6.12)

To estimate (6.11), we recall that Xc
0

.= Xc
1; and observe that for

(s, t) ∈ B1
T = {(s, t) ∈ (0, T )2 : 0 < t − s < 1},

we obtain

‖s1−μeωs(x(t) − x(s))‖p
L p(∂�)

(t − s)1+αp
≤ C

‖s1−μeωs(x(t) − x(s))‖p
X0

(t − s)1+αp

≤ C

(t − s)1+αp

(∫ t

s
τ 1−μeωτ‖T (x, y)(τ )‖X0 dτ

)p

≤ C

(t − s)1+αp

(∫ t

s
τ 1−μ‖eωy(τ )‖X1 dτ

)p

(6.13)

≤ C(t − s)β
(∫ (s+1)∧T

s
τ (1−μ)p‖eωy(τ )‖p

X1
dτ

)

,

(6.14)

for some constantC which is independent of T ∈ [0, T+), whereβ = (1−α)p−2 > 0
due to (3.2), and (s + 1) ∧ T := min{s + 1, T }. We have used (6.7) in (6.13) and
Hölder’s inequality in (6.14). Observe that

∫∫

B1
T

(t − s)β
(∫ (s+1)∧T

s
τ (1−μ)p‖eωy(τ )‖p

X1
dτ

)

ds dt

=
∫ T

0

∫ (s+1)∧T

s
(t − s)β

(∫ (s+1)∧T

s
τ (1−μ)p‖eωy(τ )‖p

X1
dτ

)

dt ds

≤
(∫ T

0

∫ (s+1)∧T

s
τ (1−μ)p‖eωy(τ )‖p

X1
dτ ds

)(∫ 1

0
tβ dt

)

=
(∫ T

0
τ (1−μ)p‖eωy(τ )‖p

X1
dτ

∫ τ

(τ−1)∨0
ds

)(∫ 1

0
tβ dt

)
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≤ 1

β + 1
‖eωy‖p

E1,μ(JT )
, (6.15)

where (τ − 1) ∨ 0 = max{τ − 1, 0}. Employing (6.9), (6.14), (6.15) and Lemma A.4,
we have

∫∫

B1
T

∥
∥s1−μeωs[K̂ (z(t)) − K̂ (z(s))]∇θ2(t)

∥
∥p
L p(∂�)

(t − s)1+rp
ds dt

≤ �(r)
∫∫

B1
T

∥
∥s1−μeωs(x(t) − x(s))

∥
∥p
L p(∂�)

(t − s)1+rp
ds dt + �(r)

∫∫

B1
T

∥
∥s1−μeωs(y(t) − y(s))

∥
∥p
L p(∂�)

(t − s)1+rp
ds dt

≤ �(r)‖eωy‖p
E1,μ(JT )

,

where we have used the fact that ‖∇θ2(t)‖∞ ≤ C‖y(t)‖Xγ,μ ≤ Cr. The estimate for
(6.12) is a direct consequence of (6.9):

∫∫

B1
T

∥
∥s1−μeωs K̂ (z(s))∇ [θ2(t) − θ2(s)]

∥
∥p
L p(∂�)

(t − s)1+rp
ds dt

≤ �(r)
∫∫

B1
T

∥
∥s1−μeωs∇ [θ2(t) − θ2(s)]

∥
∥p
L p(∂�)

(t − s)1+rp
ds dt.

Summarizing the above discussion and applying (6.10) and Lemma A.4, we have

[eωS(x, y)]pWr
p,μ(JT ;L p(∂�))

≤ �(r)‖eωy‖p
E1,μ(JT )

+ �(r)‖eω∇θ2‖p
Wr

p,μ(JT ;L p(∂�))

≤ �(r)‖eωy‖p
E1,μ(JT )

.

In the last step, we have used the embedding

W 1−1/2p
p,μ (JT ; L p(∂�)) ∩ L p,μ(JT ;W 2−1/p

p (∂�)) ↪→ Wr
p,μ(JT ;W 1

p(∂�)),

see for instance [28, Proposition 3.2], and [28, Theorem 4.5]. This yields (6.8).
Fix r > 0 so that estimates (6.7) and (6.8) hold. We put

t0 = sup{t ∈ (0, T+) : ‖x(τ )‖X0 , ‖y(τ )‖Xγ,μ ≤ r, τ ∈ [0, t]}.
Assume that t0 < T+. Then, Lemma 6.5 implies

‖eωy‖E1,μ(Jt0 ) ≤ M0

(
‖y0‖Xγ,μ + ‖eωS(x, y)‖Fμ(Jt0 ) + ‖eωR(x, y)‖E0,μ(Jt0 )

)

≤ M0‖y0‖Xγ,μ + �(r)‖eωy‖E1,μ(Jt0 ).

Choosing r > 0 sufficiently small so that �(r) < 1/2 yields

‖eωy‖E1,μ(Jt0 ) ≤ 2M0‖y0‖Xγ,μ ,
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which further implies that

‖eωy‖C([0,t0];Xγ,μ) ≤ M1‖y0‖Xγ,μ .

We can derive an estimate for x by using (6.5) and (6.7):

‖x(t)‖X0 ≤ ‖x0‖X0 +
∫ t

0
‖T (x, y)(τ )‖X0 dτ

≤ ‖x0‖X0 + C1

∫ t

0
e−ωτ τμ−1‖τ 1−μeωτy(τ )‖X1 dτ

≤ ‖x0‖X0 + C‖eωy‖E1,μ(Jt0 ) ≤ ‖x0‖X0 + M2‖y0‖Xγ,μ .

In the last line we employed Hölder’s inequality and μ > 1/p. By choosing δ <

r/2(1 + M1 + M2), where δ was introduced in (6.6), we have for all x0 ∈ BXc (0, δ)
and y0 ∈ BXs

γ,μ
(0, δ) and all t ∈ [0, t0)

‖x(t)‖X0 + ‖y(t)‖Xγ,μ ≤ ‖x0‖X0 + (M1 + M2)‖y0‖Xγ,μ ≤ r/2,

a contradiction to the definition of t0. Therefore, t0 = T+. With the choice δ <

r/2(1 + M1 + M2), the above discussion shows that there exists a constant M3 > 0
such that for any t1 ∈ (0, T+),

‖z‖C([0,t1];Xγ,μ) + ‖z‖E1,μ(Jt1 ) ≤ M3.

Let τ ∈ (0, t1) be fixed and let t be any number in [τ, t1]. Then, we have
‖z(t)‖Xγ,1 ≤ sup

s∈[τ,t1]
‖z(s)‖Xγ,1 ≤ C(τ )‖z‖E1,1([τ,t1]) ≤ C(τ )τμ−1‖z‖E1,μ([τ,t1])

≤ C(τ )τμ−1M3.

This implies that z ∈ BC([τ, T+), Xγ,1). Theorem 6.1 then implies that T+ = ∞. The
rest of the proof is exactly the same as part (f) of the proof of [32, Theorem 5.3.1]. �
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Appendix A: Properties of fractional Sobolev spaces with temporal weights

For r ∈ (0, 1), fractional Sobolev spaces with temporal weight can also be defined
by means of interpolation. It then holds that

Wr
p,μ(JT ; X)

·=
(
L p,μ(JT ; X),W 1

p,μ(JT ; X)
)

r,p
,

where the symbol
·=means equivalent norms; see [26, Proposition1.1.13], or [28, equa-

tion (2.6)]. The corresponding norm is called the interpolation norm ofWr
p,μ(JT ; X).

It is pointed out in [26, Remark 1.1.15] that the equivalence constant between the in-
trinsic norm (1.5) and the interpolation norm of Wr

p,μ(JT ; X) blows up as T → 0+.
Using interpolation norms can cause difficulties in obtaining uniform estimates for
nonlinear terms on short time intervals (0, T ) that are independent of T . This diffi-
culty can often be circumvented by using intrinsic norms.
In this section, we establish some useful results for fractional Sobolev spaces with

temporal weights by exclusively using intrinsic norms. These results are also interest-
ing in their own right. Analogous results have been obtained in [26], see also [28], by
using interpolation norms. For instance, it is shown in [26, Lemma 1.1.15] that there
exists an extension operator ET : 0Wr

p,μ(JT ; X) → 0Wr
p,μ(R+; X) whose norm is

independent of T , where both spaces are equipped with the corresponding interpola-
tion norms. The merit of Proposition A.4 lies in the fact that we can completely rely
on intrinsic norms. This greatly facilitates deriving estimates for nonlinear boundary
terms.
The results obtained in this section employed in obtaining estimates for nonlinear

mappings, but are also of independent interest. We recall that

0W
r
p,μ(JT ; X) := {u ∈ Wr

p,μ(JT ; X) : γ0u = 0},

where r, μ ∈ (1/p, 1] with r + μ > 1 + 1/p, and X is a Banach space; see [28,
Proposition 2.10].
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Lemma A.1. Let X be a Banach space. Given p ∈ (1,∞) and r, μ ∈ (1/p, 1]
such that r + μ > 1 + 1/p, there exists a constant C > 0, which is independent of
T ∈ (0,∞], such that

(∫ T

0
t (1−μ−r)p‖u(t)‖p

X dt

)1/p

≤ C‖u‖Wr
p,μ(JT ;X)

for all u ∈ 0Wr
p,μ(JT ; X), where 0Wr

p,μ(JT ; X) is equipped with the intrinsic norm.

Proof. The case r ∈ {0, 1} follows from the definition of L p,μ(JT ; X) and [26,
Lemma 1.1.2(b)]. When r ∈ (0, 1),

(∫ T

0
t (1−μ−r)p‖u(t)‖p

X dt

)1/p

=
(∫ T

0

(

t−μ−r
∫ t

0
‖u(t)‖X ds

)p

dt

)1/p

≤
(∫ T

0

(

t−μ−r
∫ t

0
‖u(t) − u(s)‖X ds

)p

dt

)1/p

+
(∫ T

0

(

t−μ−r
∫ t

0
‖u(s)‖X ds

)p

dt

)1/p

. (A.1)

We will use Hölder’s inequality to estimate the first term in (A.1) as follows:
(∫ T

0

(

t−μ−r
∫ t

0
‖u(t) − u(s)‖X ds

)p

dt

)1/p

≤
(∫ T

0
t (−μ−r)p

(∫ t

0
s(1−μ)p‖u(t) − u(s)‖p

X ds

)(∫ t

0
s(μ−1)p′

ds

)p/p′

dt

)1/p

≤ C

(∫ T

0
t−1−rp

(∫ t

0
s(1−μ)p‖u(t) − u(s)‖p

X ds

)

dt

)1/p

≤ C[u]Wr
p,μ(JT ;X).

In the last line, we used that 1/t < 1/(t − s) for s ∈ (0, t). Observe that it follows
from the condition μ ∈ (1/p, 1] that (μ − 1)p′ > −1. To estimate the second term
in (A.1), we will apply Hardy’s inequality, c.f. [32, Lemma 3.4.5], to obtain
(∫ T

0

(

t−μ−r
∫ t

0
‖u(s)‖X ds

)p

dt

)1/p

≤ 1

(μ + r − 1/p)

(∫ T

0
t (1−μ−r)p‖u(t)‖p

X dt

)1/p

.

Hence, we have shown that
(∫ T

0
t (1−μ−r)p‖u(t)‖p

X dt

)1/p

≤ C‖u‖Wr
p,μ(JT ;X) + 1

(μ + r − 1/p)
(∫ T

0
t (1−μ−r)p‖u(t)‖p

X dt

)1/p

.

In view of the condition r + μ > 1 + 1/p, the asserted estimate then follows. �
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Lemma A.2. Suppose μ ∈ [0, 1]. Then, we have
(
t1−μ − s1−μ

)p ≤ t−μp(t − s)p and |tμ−1 − sμ−1|p ≤ s(μ−1)pt−p(t − s)p,

0 < s < t < ∞.

Proof. The assertions are clear for μ ∈ {0, 1}. In case μ ∈ (0, 1), we obtain

(t1−μ − s1−μ)p = t (1−μ)p
(
1 − (s/t)1−μ

)p ≤ t (1−μ)p (1 − (s/t))p = t−μp(t − s)p.

This estimate, in turn, yields

|tμ−1 − sμ−1|p = s(μ−1)pt (μ−1)p(t1−μ − s1−μ)p ≤ s(μ−1)pt−p(t − s)p.

�

For u ∈ L1,loc(JT ; X), we define (�μu)(t) := t1−μu(t), see [31]. It is then clear
that

�μ : L p,μ(JT ; X) → L p(JT ; X) is an isometric isomorphism, (A.2)

and its inverse �−1
μ is given by (�−1

μ v)(t) = tμ−1v(t). The next result shows that �μ

induces an isomorphism for the Sobolev spaces 0Wr
μ,p(JT ; X).

Lemma A.3. Let X be a Banach space. Suppose that r, μ ∈ (1/p, 1] and r + μ >

1 + 1/p. Then, it holds that

�μ ∈ Lis(0Wr
p,μ(JT ; X), 0W

r
p(JT ; X)).

Moreover, there exists a constant C which is independent of T ∈ (0,∞] such that

‖�μu‖Wr
p,μ(JT ;X) ≤ C‖u‖Wr

p(JT ;X), ‖�−1
μ v‖Wr

p(JT ;X) ≤ C‖v‖Wr
p,μ(JT ;X),

(A.3)

where the spaces are equipped with their respective intrinsic norms.

Proof. The first part of the assertion has been established in [28, Lemma 2.3], where
the spaces are equipped with their respective interpolation norms.
We will now establish the uniform estimates in (A.3) for intrinsic norms. The case

r = 1 follows readily from Lemma A.1. For the reader’s convenience, we include a
proof (see also [26, Lemma 1.1.3]). Suppose u ∈ W 1

p,μ(JT ; X). Then, we obtain

‖(�μu)′‖L p(JT ;X) ≤
(∫ T

0
‖t1−μu′(t)‖p

X dt

)1/p

+ (1 − μ)

(∫ T

0
t−μp‖u(t)‖p

X dt

)1/p

≤ C‖u‖W 1
p,μ(JT ;X),

where we used Lemma A.1 with r = 1. Suppose now that v ∈ 0W 1
p,μ(JT ; X). Then,

we obtain

‖(�−1
μ v)′‖L p,μ(JT ;X) ≤

( ∫ T

0
‖v′(t)‖p

X dt
)1/p + |μ − 1|

(∫ T

0
t−1‖v‖p

X dt

)1/p
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≤ ‖v‖W 1
p(JT ;X),

where we employed, once more, Lemma A.1 with r = μ = 1. These estimates
together with (A.2) imply the assertion.
We will now consider the case r < 1 and r + μ > 1 + 1/p. Suppose u ∈

0Wr
p,μ(JT ; X). Then, we obtain

[�μu]Wr
p(JT ;X) =

(∫ T

0

∫ t

0

‖(�μu)(t) − (�μu)(s)‖p
X

(t − s)1+rp
ds dt

)1/p

≤
(∫ T

0

∫ t

0
s p(1−μ) ‖u(t) − u(s)‖p

X

(t − s)1+rp
ds dt

)1/p

+
(∫ T

0

∫ t

0

(t1−μ − s1−μ)p

(t − s)1+rp
‖u(t)‖p

X ds dt

)1/p

≤ [u]Wr
p,μ(JT ;X) +

(∫ T

0

∫ t

0
t−μp(t − s)(1−r)p−1‖u(t)‖p

X ds dt

)1/p

≤ [u]Wr
p,μ(JT ;X) + c(r, p)

(∫ T

0
t (1−μ−r)p‖u(t)‖p

X dt

)1/p

(A.4)

≤ C‖u‖Wr
p,μ(JT ;X). (A.5)

We used Lemma A.2 in (A.4) and Lemma A.1 in (A.5).
Suppose that v ∈ 0Wr

p(JT ; X). Then, we obtain

[(�μ)−1v]Wr
p,μ(JT ;X) =

(∫ T

0

∫ t

0
s(1−μ)p ‖(�−1

μ v)(t) − (�−1
μ v)(s)‖p

X

(t − s)1+rp
ds dt

)1/p

≤
(∫ T

0

∫ t

0

‖v(t) − v(s)‖p
X

(t − s)1+rp
ds dt

)1/p

+
(∫ T

0

∫ t

0
s(1−μ)p |tμ−1 − sμ−1|p

(t − s)1+rp
‖v(t)‖p

X ds dt

)1/p

≤ [u]Wr
p(JT ;X) + c(r, p)

(∫ T

0
t−rp‖u(t)‖p

X dt

)1/p

(A.6)

≤ C‖u‖Wr
p(JT ;X). (A.7)

Here we used, once more, Lemma A.2 in (A.6) and Lemma A.1 in (A.7). �

Proposition A.4. Let X be a Banach space. Suppose r, μ ∈ (1/p, 1] and r + μ >

1 + 1/p. Then, there exists an extension operator:

EJT : 0Wr
p,μ(JT ; X) → 0W

r
p,μ(R+; X)

such that its norm is independent of T ∈ (0,∞], where the spaces are equipped with
their intrinsic norms.
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Proof. We define the extension operator by

EJT u(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

u(t) for 0 < t ≤ T
( 2T−t

t

)1−μ
u(2T − t) for T < t ≤ 2T

0 for 2T < t.

The statement follows from Lemma A.3, [30, Proposition 6.1], and the commutativity
of the diagram

0W
r
p,μ(JT ; X)

�μ−→ 0W
r
p(JT ; X)

↓ EJT ↓ ET

0W
r
p,μ(R+; X)

�−1
μ←− 0W

r
p(R+; X),

where the extension operatorET on the right side is defined in [30, Proposition 6.1]. �

The following result is used in Sect. 6 in order to show stability of (constant) equi-
libria.

Lemma A.4. Let T > 0, r ∈ (0, 1), ω ∈ R, and μ ∈ (1/p, 1]. We then set
BT = {(s, t) ∈ (0, T )2 : 0 < s < t} and B1

T = {(s, t) ∈ (0, T )2 : 0 < t − s < 1}.
Suppose that X is a Banach space and u ∈ Wr

p,μ(JT ; X). Then,

[eωu]Wr
p,μ(JT ;X) ≤ C‖eωu‖L p,μ(JT ;X) +

(∫∫

B1
T

‖s1−μeωs(u(t) − u(s))‖p
X

(t − s)1+rp
ds dt

)1/p

≤ C‖eωu‖Wr
p,μ(JT ;X),

where the constant C = C(p, r, ω) is independent of T and eω : L1,loc(R+) →
L1,loc(R+) : u �→ eωt u.

Proof. Using (1.5), we estimate as in [22, Lemma 11] and obtain

[eωu]Wr
p,μ(JT ;X)

≤
(∫∫

BT \B1
T

s p(1−μ) ‖eωt u(t) − eωsu(s)‖p
X

(t − s)1+rp
ds dt

)1/p

+
(∫∫

B1
T

s p(1−μ) ‖eωt u(t) − eωsu(s)‖p
X

(t − s)1+rp
ds dt

)1/p

≤
(∫ T

0

∫ t−1

0

‖t1−μ eωt u(t)‖p
X

(t − s)1+rp
ds dt

)1/p

+
(∫ T

0

∫ T

s+1

‖s1−μ eωsu(s)‖p
X

(t − s)1+rp
dt ds

)1/p

+
(∫∫

B1
T

s p(1−μ)eωtp‖u(t)‖p
X

|e−ω(t−s) − 1|p
(t − s)1+rp

ds dt

)1/p
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+
(∫∫

B1
T

s p(1−μ)eωsp ‖u(t) − u(s)‖p
X

(t − s)1+rp
ds dt

)1/p

≤ ‖eωu‖L p,μ(JT ;X)

[

2

(∫ ∞

1

dτ

τ 1+rp

)1/p

+ c(ω)

(∫ 1

0

dτ

τ 1+(r−1)p

)1/p]

+
(∫∫

B1
T

s p(1−μ)eωsp ‖u(t) − u(s)‖p
X

(t − s)1+rp
ds dt

)1/p

≤ C‖eωu‖L p,μ(JT ;X) +
(∫∫

B1
T

s p(1−μ)eωsp ‖u(t) − u(s)‖p
X

(t − s)1+rp
ds dt

)1/p

.

In the derivation above, we have used that s < t for (s, t) ∈ BT . �

Our next result deals with multiplication properties in weighted Sobolev spaces.

Lemma A.5. Let T∗ > 0 be given.

(i) There exists a constant C > 0, which is independent of T ∈ (0, T∗], such that

‖uv‖Fμ(JT ) ≤ C‖u‖Fμ(JT )‖v‖Fμ(JT ), for all u, v ∈ 0Fμ(JT ).

(ii) There exists a constant C > 0, which is independent of T ∈ (0, T∗], such that

‖uv‖Fμ(JT ) ≤ C‖u‖Fμ(JT )‖v‖F1,μ(JT ), for all (u, v) ∈ Fμ(JT ) × 0F1,μ(JT ),

where F1,μ(JT ) is defined as

F1,μ(JT ) := W 1−1/2p
p,μ (JT ; L p(∂�)) ∩ C([0, T ];W 2μ−3/p

p (∂�)). (A.8)

Proof. (i) The assertion follows from the fact that Fμ(JT ) is a Banach algebra and
Proposition A.4. See also [26, Lemma 1.3.23].
(ii) To explain the occurrence of the space C([0, T ];W 2μ−3/p

p (∂�)) in (A.8), we note
that

W 1−1/2p
p,μ (JT ; L p(∂�)) ∩ L p,μ(JT ;W 2−1/p

p (∂�)) ↪→ C([0, T ];W 2μ−3/p
p (∂�))

see [28, equation (4.10)]. It is an easy task to check that

‖uv‖
L p,μ(JT ;W 1−1/p

p (∂�))
≤ C‖v‖

L∞(JT ;W 1−1/p
p (∂�))

‖u‖
L p,μ(JT ;W 1−1/p

p (∂�))

for some C > 0 independent of T ∈ (0, T∗]. In addition, one has
‖uv‖

W 1/2−1/2p
p,μ (JT ;L p(∂�))

≤ ‖v‖C([0,T ]×�)‖u‖L p,μ(JT ;L p(∂�)) + [uv]
W 1/2−1/2p

p,μ (JT ;L p(∂�))
. (A.9)

We can derive from Proposition A.4 and equation (1.4) in [29, Theorem 1.1] (by
choosing pi = qi = p for i = 0, 1, γ0 = (1 − μ)p, and γ1 = 0) that

0W
1−1/2p
p,μ (JT ; L p(∂�)) ↪→ 0W

s1
p (JT ; L p(∂�))
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for s1 = μ − 1/p with embedding constant independent of T ∈ (0, T∗]. Due to
assumption (3.2), we have s1 > 1/2 + 2/p. This implies

0F1,μ(JT ) ↪→ Cσ ([0, T ]; L p(∂�))

for some σ > 1/2 + 1/p with embedding constant independent of T . Therefore, the
second term on the right-hand side of (A.9) can be estimated as follows:

[uv]p
W 1/2−1/2p

p,μ (JT ;L p(∂�))

≤
∫ T

0

∫ t

0
s p(1−μ)

‖u(t)v(t) − u(s)v(s)‖p
L p(∂�)

(t − s)1/2+p/2 dsdt

≤ ‖v‖p
C([0,T ]×�)

[u]p
W 1/2−1/2p

p,μ (JT ;L p(∂�))

+
∫ T

0

∫ t

0
s p(1−μ)‖u(s)‖p

C(�)

‖v(t) − v(s)‖p
L p(∂�)

(t − s)1/2+p/2 dsdt

≤ ‖v‖p
C([0,T ]×�)

[u]p
W 1/2−1/2p

p,μ (JT ;L p(∂�))

+ ‖v‖p
Cσ ([0,T ];L p(∂�))

∫ T

0

∫ t

0
s p(1−μ)‖u(s)‖p

C(�)
(t − s)σ p−(1/2+p/2) dsdt

≤ ‖v‖p
C([0,T ]×�)

[u]p
W 1/2−1/2p

p,μ (JT ;L p(∂�))
+ C1‖v‖p

Cσ ([0,T ];L p(∂�))
‖u‖p

L p,μ(JT ;C(�))

for some constant C1 = C1(T ) > 0 that is uniform in T ∈ (0, T∗]. This implies

[uv]
W 1/2−1/2p

p,μ (JT ;L p(∂�))
≤ C‖v‖0F1,μ(JT )‖v‖Fμ(JT ),

where C = C(T ) is uniform in T ∈ (0, T∗]. �

Appendix B: Properties of nonlinear maps

In this section, we establish some mapping properties for the nonlinear operators
in (1.1). Our first step is to study the Nemyskii operators induced by the functions in
(2.1).

Lemma B.1. Suppose ϕ ∈ C5(R) and X ∈ {W 2μ−2/p
p (�),W 2μ+1−2/p

p (�),

E
k
2,μ(JT ),Fμ(JT )}, where

E
k
2,μ(JT ) := W 1

p,μ(JT ;Wk
p(�)) ∩ L p,μ(JT ;Wk+2

p (�)), k = 0, 1.

Then, the Nemyskii operator induced by ϕ, still denoted by ϕ, satisfies

ϕ ∈ C1(X).

Moreover, given T∗ > 0

‖ϕ(u)‖Fμ(JT ) ≤ C
(‖ϕ′(u)‖∞‖u‖Fμ(JT ) + ‖ϕ(u)‖∞

)
, u ∈ Fμ(JT ). (B.1)

The constant C > 0 is uniform with respect to T ∈ (0, T∗].
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Proof. The mapping property ϕ ∈ C1(Ek
2,μ(JT )) can be proved via direct computa-

tions and the fact that ϕ ∈ C5(R). It follows from Lemma 3.1(b) that there exists a
bounded right inverse γ c

0 for the initial trace operator

γ0 : E0
2,μ(JT ) → W 2μ−2/p

p (�).

The C1-continuity of ϕ in W 2μ−2/p
p (�) then follows from the relationship

ϕ(u) = γ0ϕ(γ c
0 (u)), u ∈ W 2μ−2/p

p (�).

The case X = W 2μ+1−2/p
p (�) follows from a similar argument. The assertion in

(B.1) has been proved in [26, Lemma 4.2.3(a)]. A close look at its proof shows that
the constant in [26, Lemma 4.2.3(a)] is uniform with respect to T ∈ (0, T∗]. The
C1-continuity of ϕ in Fμ(JT ) can be derived from (B.1) by a mean value theorem
argument and the fact that Fμ(JT ) is a Banach algebra. �

Next, we will establish some relevant mapping properties of the operators in (3.7).
For the analysis below, note that by Proposition A.4 and [28, Theorems 4.2 and 4.5],
there exists a constant C > 0 such that

‖tr∂�v‖F1,μ(JT ) ≤ C‖v‖
E
0
2,μ(JT ), v ∈ E

0
2,μ(JT ), (B.2)

where the embedding constant is independent of T if v ∈ 0E
0
2,μ(JT ).

Suppose that φ1 ∈ C5(R16), φ2 ∈ C5(R48) and φ3 ∈ C5(R9). In order to derive an
estimate for

‖A(z1 + z2) − A(z1) − A′(z1)z2‖E0,μ(JT )

for proper functions z1, z2 ∈ E1,μ(JT ), we will consider five types of mappings, given
by

G1(z) = φ1(z)φ2(∂z),

G2(z) = φ1(z)∂i j z,

G3(z) = φ1(z)φ3(∂m),

G4(z) = φ1(z)φ3(∂m)∂i jm,

G5(z) = φ1(z)|	m|2,

(B.3)

where for any function z = (u, F, θ,m) ∈ C1(�,R16), we define ∂z ∈ C(�,R48)

by ∂z = (∂1z, ∂2z, ∂3z), and ∂m ∈ C(�,R9) by ∂m = (∂1m, ∂2m, ∂3m).

All terms in A(z) can be estimated by using one of the functions Gi . For instance,

• terms like μ′(θ)∂iθ∂i u can be estimated by using G1 with φ1(z) = μ′(θ) and
φ2(∂z) = ∂iθ∂i u;

• terms like μ(θ)∂i i u can be estimated by using G2 with φ1(z) = μ(θ);
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• the term K (z) : ∇2θ = Ki j (z)∂i jθ can be estimated by using G2 with φ1(z) =
Ki j (z);

• terms like α(θ)|m|2|∇m|2 can be estimated by G3 with φ1(z) = α(θ)|m|2 and
φ3(∂m) = |∇m|2;

• the scalar components of (α(θ)I3 − β(θ)M(m))	m can be estimated by using
G4 with φ3 ≡ 1 and φ1 properly chosen;

• the term α(θ)|∇m|2 m · 	m, appearing in the θ -equation, can be estimated by
using G4 with φ3(∂m) = |∇m|2 and φ1 properly chosen;

• lastly, the term α(θ)|	m|2 can be estimated by using G5 with φ1(z) = α(θ).

Lemma B.2. Let the functions Gi , 1 ≤ i ≤ 5 be given by (B.3). Then,

G1,G2,G5 ∈ C1(E1,μ(JT ),E0
0,μ(JT )), G3,G4 ∈ C1(E1,μ(JT ),E1

0,μ(JT )),

where Ek
0,μ(JT ) = L p,μ(JT ;Wk

p(�)), k = 0, 1. Furthermore, given T0, R0 > 0, then
for any T ∈ (0, T0], R ∈ (0, R0] and any z1 = (u1, F1, θ1,m1) ∈ E1,μ(JT ) and
z2 = (u2, F2, θ2,m2) ∈ 0E1,μ(JT ) satisfying

‖z1‖Bμ(JT ), ‖z1‖E1,μ(JT ), ‖z2‖E1,μ(JT ) ≤ R,

the following estimate holds

‖Gi (z1 + z2) − Gi (z1) − G ′
i (z1)z2‖E0

0,μ(JT ) ≤ �(‖z2‖E1,μ(JT ))‖z2‖E1,μ(JT ),

i = 1, 2, 5,

‖Gi (z1 + z2) − Gi (z1) − G ′
i (z1)z2‖E1

0,μ(JT ) ≤ �(‖z2‖E1,μ(JT ))‖z2‖E1,μ(JT ),

i = 3, 4,
(B.4)

where G ′
i is the Frechét derivative of Gi .

Proof. The continuous differentiability of Gi follows by direct computations. We will
only establish the estimates in (B.4). Easy computations lead to

G1(z1 + z2) − G1(z1) − G ′
1(z1)z2

= (φ1(z1 + z2) − φ1(z1) − φ′
1(z1)z2)

)
φ2(∂z1)

+ φ1(z1 + z2)
(
φ2(∂z1 + ∂z2) − φ2(∂z1) − φ′

2(∂z1)∂z2
)

+ (φ1(z1 + z2) − φ1(z1)) φ′
2(∂z1)∂z2.

Then the mean value theorem, Lemma 3.1(a), (3.3) implies

∥
∥
(
φ1(z1 + z2) − φ1(z1) − φ′

1(z1)z2)
)
φ2(∂z1)

∥
∥
E
0
0,μ(JT )

≤ ‖φ2(∂z1)‖∞ ‖z2‖∞
∫ 1

0

∥
∥φ′

1(z1 + σ z2) − φ′
1(z1)
∥
∥
E
0
0,μ(JT )

dσ
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≤ ‖φ2(∂z1)‖∞ ‖z2‖∞
∫

[0,1]×[0,1]
∥
∥φ′′

1 (z1 + τσ z2)
∥
∥∞ ‖z2‖E0

0,μ(JT ) dσ dτ

≤ �(‖z2‖E1,μ(JT ))‖z2‖E1,μ(JT ).

In the above, φ′(z) denotes the Frechét derivative of the Nemyskii operator induced by
φ and we have used the fact that φ′(z) =∑16

j=1 ∂ jφ(z) ⊗ e j , where ∂ jφ is the partial
derivative of φ. We will take advantage of this observation in the sequel. Note that the
function � above is uniform with respect to T ∈ (0, T0] in view of Lemma 3.1(a).
Estimating in the same way, we have

‖φ1(z1 + z2)
(
φ2(∂z1 + ∂z2) − φ2(∂z1) − φ′

2(∂z1)∂z2
) ‖

E
0
0,μ(JT )

≤ �(‖z2‖E1,μ(JT ))‖z2‖E1,μ(JT ).

The remaining terms can be estimated again by using the mean value theorem as
follows:

‖ (φ1(z1 + z2) − φ1(z1)) φ′
2(∂z1)∂z2‖E0

0,μ(JT )

≤ ‖φ′
2(∂z1)‖∞ ‖∂z2‖∞

∫ 1

0

(
‖φ′

1(z1 + σ z2)‖∞ ‖z2‖E0
0,μ(JT )

)
dσ

≤ �(‖z2‖E1,μ(JT ))‖z2‖E1,μ(JT ).

The estimate for G3 and G5 can be obtained in the same manner in view of the
additional regularity of m.
The estimate for G2 will be slightly different in the sense that we need to evaluate

∂i j zk , k = 1, 2, by using the E0
0,μ(JT )-norm. First, notice that

G2(z1 + z2) − G2(z1) − G ′
2(z1)z2,

= (φ1(z1 + z2) − φ1(z1) − φ′
1(z1)z2

)
∂i j z1 + (φ1(z1 + z2) − φ1(z1)) ∂i j z2.

Then,

‖ (φ1(z1 + z2) − φ1(z1) − φ′
1(z1)z2

)
∂i j z1‖E0

0,μ(JT )

≤ ‖∂i j z1‖E0
0,μ(JT ) ‖z2‖∞

∫ 1

0

∥
∥φ′

1(z1 + σ z2) − φ′
1(z1)
∥
∥∞ dσ

≤ �(‖z2‖E1,μ(JT ))‖z2‖E1,μ(JT ).

Similarly,

‖ (φ1(z1 + z2) − φ1(z1)) ∂i j z2‖E0
0,μ(JT ) ≤ �(‖z2‖E1,μ(JT ))‖z2‖E1,μ(JT ).

The estimate forG4 can be derived in a similarwaybyutilizing the additional regularity
of m and the facts that

‖G6(z1 + z2) − G6(z1) − G ′
6(z1)z2‖C([0,T ];C1(�)) ≤ �(‖z2‖C([0,T ];C1(�)))
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‖z2‖C([0,T ];C1(�)),

‖G6(z1 + z2) − G6(z1)‖C([0,T ];C1(�)) ≤ M‖z2‖C([0,T ];C1(�)),

where G6(z) = φ1(z)φ3(∂m). �

We are now ready to establish the differentiability of (A,B,F) as operators defined
on E1,μ(JT ).

Proposition B.3. Assume (2.1) and (3.2). Then,

A ∈ C1(E1,μ(JT ),E0,μ(JT )), A′(z∗)z = A(z∗)z + [A′(z∗)z]z∗,
F ∈ C1(E1,μ(JT ),E0,μ(JT ))),

B ∈ C1(E1,μ(JT ),Fμ(JT )), B′(z∗)z = B(z∗)z + [B′(z∗)z]z∗,

for z∗, z ∈ E1,μ(JT ), where the mappings (A,B)were introduced in (4.12). Moreover,
given T0, R0 > 0, then for any T ∈ (0, T0], R ∈ (0, R0] and any z∗ ∈ E1,μ(JT ),
z ∈ 0E1,μ(JT ) satisfying

‖tr∂�z∗‖Fμ(JT ), ‖tr∂�∇z∗‖Fμ(JT ), ‖z∗‖Bμ(JT ), ‖z∗‖E1,μ(JT ), ‖z‖E1,μ(JT ) ≤ R,

the following estimates hold:

‖A(z∗ + z) − A(z∗) − A′(z∗)z‖E0,μ(JT ) ≤ �(‖z‖E1,μ(JT ))‖z‖E1,μ(JT ),

‖F(z∗ + z) − F(z∗) − F′(z∗)z‖E0,μ(JT ) ≤ �(‖z‖E1,μ(JT ))‖z‖E1,μ(JT ),

‖B(z∗ + z) − B(z∗) − B′(z∗)z‖Fμ(JT ) ≤ �(‖z‖E1,μ(JT ))‖z‖E1,μ(JT ).

(B.5)

If, in addition, z ∈ E1,μ(JT ) with z∗(0) = z(0) satisfies

‖tr∂�z‖Fμ(JT ), ‖tr∂�∇z‖Fμ(JT ), ‖z‖E1,μ(JT ), ‖z‖Bμ(JT ) ≤ R,

then the following estimates hold

‖A′(z∗)z − A′(z)z‖E0,μ(JT ) ≤ �(‖z∗ − z‖E1,μ(JT ))‖z‖E1,μ(JT ),

‖F′(z∗)z − F′(z)z‖E0,μ(JT ) ≤ �(‖z∗ − z‖E1,μ(JT ))‖z‖E1,μ(JT ),

‖B′(z∗)z − B′(z)z‖Fμ(JT ) ≤ �(‖z∗ − z‖E1,μ(JT ))‖z‖E1,μ(JT ).

(B.6)

Proof. The continuous differentiability of A and F and the first two estimates in
(B.5) are immediate consequences of Lemma B.2. The continuous differentiability
of B is a direct consequence of Lemma B.1 and the fact that Fμ(JT ) is a Banach
algebra. To establish the last estimate in (B.5), we set z = (z j )16j=1 = (u, F, θ,m)

and z∗ = (u∗, F∗, θ∗,m∗). Then, we can apply (B.1), (B.2), Lemma A.5(i) and (ii),
Proposition A.4, and [28, Theorem 4.5] to obtain (where we suppress tr∂� in the
following computations)
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‖B(z∗ + z) − B(z∗) − B′(z∗)z‖Fμ(JT )

≤
∥
∥
∥
∥

[(∫ 1

0

(
K ′(z∗ + σ z) − K ′(z∗)

)
dσ

)

z

]

∇θ∗
∥
∥
∥
∥
Fμ(JT )

+
∥
∥
∥
∥

[(∫ 1

0

(
K ′(z∗ + σ z)

)
dσ

)

z

]

∇θ

∥
∥
∥
∥
Fμ(JT )

≤ C

∥
∥
∥
∥

∫ 1

0

(
K ′(z∗ + σ z) − K ′(z∗)

)
dσ

∥
∥
∥
∥
Fμ(JT )

‖∇θ∗‖Fμ(JT ) ‖z‖F1,μ(JT )

+ C

∥
∥
∥
∥

∫ 1

0
K ′(z∗ + σ z) dσ

∥
∥
∥
∥
Fμ(JT )

‖∇θ‖Fμ(JT ) ‖z‖F1,μ(JT )

≤ �(‖z‖E1,μ(JT ))‖z‖E1,μ(JT ).

This establishes the last estimate in (B.5).
Concerning the estimates in (B.6), wewill only establish the last one. The remaining

two follow from a similar argument.

‖B′(z∗)z − B′(z)z‖Fμ(JT ) = ‖B(z∗)z − B(z)z − [B′(z∗)z]z∗ + [B′(z)z]z‖Fμ(JT )

≤ ‖B(z∗)z − B(z)z‖Fμ(JT ) + ‖[B′(z∗)z]z∗ − [B′(z)z]z‖Fμ(JT ).

Let z = (u, F, θ,m). Then, the first term on the right-hand side can be estimated by
using (B.1), (B.2), Lemma A.5(i) and (ii), Proposition A.4, and [28, Theorems 4.2 and
4.5] as follows:

‖B(z∗)z − B(z)z‖Fμ(JT ) ≤ C‖K (z∗) − K (z)‖Fμ(JT )‖∇θ‖Fμ(JT )

≤ C
∫ 1

0
‖K ′(σ z∗ + (1 − σ)z)‖Fμ(JT ) dσ‖z∗

− z‖F1,μ(JT )‖z‖E1,μ(JT )

≤ �(‖z∗ − z‖E1,μ(JT ))‖z‖E1,μ(JT ).

The estimate of the second term can be obtained analogously:

‖[B′(z∗)z]z∗ − [B′(z)z]z‖Fμ(JT )

≤ ‖[K ′(z∗)z]∇(θ∗ − θ)‖Fμ(JT ) + ‖[(K ′(z∗) − K ′(z))z]∇θ‖Fμ(JT )

≤ C

⎛

⎝‖K ′(z∗)z‖Fμ(JT )‖∇(θ∗ − θ)‖Fμ(JT ) +
16∑

j=1

‖ (∂ j K (z∗) − ∂ j K (z)
) ‖Fμ(JT )‖z j∇θ‖Fμ(JT )

⎞

⎠

≤ C
(‖K ′(z∗)‖Fμ(JT ) + �(R)‖∇θ‖Fμ(JT )

) ‖z‖F1,μ(JT )‖z∗ − z‖E1,μ(JT )

≤ �(‖z∗ − z‖E1,μ(JT ))‖z‖E1,μ(JT ).

�

To study the continuous dependence of solutions to (3.7) on the initial data, see
Theorem 5.1(b), we need the following result.
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Lemma B.3. Let B be as in (4.12). Then, we have

(a) B ∈ C1(Xγ,μ,Yγ,μ) and B′(z0)z = B(z0)z + [B′(z0)z]z0, z0, z ∈ Xγ,μ.

(b) For each z0 ∈ Xγ,μ, B′(z0) ∈ L(Xγ,μ,Yγ,μ) has a bounded right inverse
R(z0) ∈ L(Yγ,μ, Xγ,μ).

Proof. (a) By Lemma 3.1, the trace operator γ0 ∈ L(E1,μ(JT ), Xγ,μ) has a right
inverse γ c

0 ∈ L(Xγ,μ,E1,μ(JT )). It is then easy to see that B(z) = γ̃0B(γ c
0 (z)),

where γ̃0 denotes the initial time trace operator for functions defined on Fμ(JT ).
The assertions then follow from Proposition B.3.

(b) The existence of R(z0) is proved in [26, Proposition 2.5.1]. �
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[34] A. Schlömerkemper, J. Žabenskỳ, Uniqueness of solutions for a mathematical model for magneto-
viscoelastic flows. Nonlinearity 31, no. 6, 2989-3012 (2018).

[35] G. Simonett, Center manifolds for quasilinear reaction-diffusion systems. Differential Integral
Equations 8, 753–796 (1995).

[36] A. Sonnet, E. Virga, Dissipative ordered fluids: theories for liquid crystals. Springer Science &
Business Media. 2012.

[37] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publish-
ing Co., Amsterdam-New York, 1978.

[38] W. Zhao,Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete Contin.
Dyn. Syst. 38, no. 9, 4637–4655 (2018).



J. Evol. Equ. On a thermodynamically consistent model Page 51 of 51     9 

Hengrong Du and Gieri Simonett
Department of Mathematics
Vanderbilt University
Nashville TN
USA
E-mail: hengrong.du@vanderbilt.edu

Gieri Simonett
E-mail: gieri.simonett@vanderbilt.edu

Yuanzhen Shao
Department of Mathematics
The University of Alabama
Tuscaloosa AL
USA
E-mail: yshao8@ua.edu

Accepted: 17 December 2023


	On a thermodynamically consistent model for magnetoviscoelastic fluids in 3D
	Abstract
	1. Introduction
	2. Thermodynamic consistency
	2.1. Entropy and equilibria

	3. The functional analytic setting
	4. Linearized problems
	5. Local well-posedness
	6. Stability and long-time behavior
	Acknowledgements
	Appendix A: Properties of fractional Sobolev spaces with temporal weights
	Appendix B: Properties of nonlinear maps
	REFERENCES


