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1. Introduction

We will study the following system of equations that models the evolution of a magnetoviscoelastic fluid

ou+u-Vu— psAu+Vr=-V-(VmeOVm)+V-(FFT) in Ry, x,
V-ou=0 in Ry x £,
u=0 on R, x 9%,
OF +u-VF — (Vu)"F = kAF in Ry x £,
F=0 on R, x 02, (1.1)
om+u-Vm=—-amx (mxAm)—Fmx Am in Ry x {2,
0,m=20 on R, x 92,
|m| =1 in Ry x £,
(u(0), F(0),m(0)) = (uo, Fo,mo) in 0.
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Here, 2 C R? is a bounded connected C3-domain with outward unit normal field v. The unknowns
(u, Fm) : Ry x 2 — R3 x M3 x R? denote the fluid velocity, the deformation tensor field and the
magnetization field, respectively, while 7 is the pressure. Moreover, M stands for the set of all (3 x 3)-real
matrices. The parameters «, § > 0 are the so-called Gilbert damping and the exchange constant, while p
and x are the dynamic viscosity and dissipative coefficient, respectively.

The notation Vm © Vm means Vm(Vm)T. Hence, Vi ® Vm is a symmetric tensor with coefficients
[Vm © Vm|;; = Oym - O;m.

(1.1) is a coupled system of equations containing

e the incompressible Navier—Stokes equations for the velocity field u and including in addition magnetic
and elastic terms in the stress tensor,

¢ a transport-stretch-dissipative system for the deformation tensor F,

o a convected Landau-Lifshitz—Gilbert system for the magnetization field m.

As a multi-physical hydrodynamics model, (1.1) enjoys the following energy dissipation property:

%/g % (Jul* + |F* + |[Vm[?) da = —/Q (1s|Vul> + k| VF|* + of Am + |Vm|*m |?) dz,
see Proposition 4.1.

The system (1.1) was first introduced in [1,2]. This model can describe the motion of fluids with
micromagnetic and elastic particles such as ferrofluids [3,4] and magnetorheological fluids [5]. Existence
of weak solutions in 2D was established in [1] under a smallness condition on the initial data by using a
Galerkin approximation. In [6], the authors extended these results under more general assumptions on the
elastic energy density. Moreover, they proved local-in-time existence of strong solutions and they established
a weak-strong uniqueness property. Recently, the authors in [7] obtained global weak solutions to (1.1) with
partial regularity in a 2D periodic domain by a careful blow-up analysis near singularities.

The main difficulty in constructing global weak solutions to (1.1) is caused by the lack of sufficient
integrability in the a priori energy estimates for the stress tensor term Vm © Vm.

In 3D, the authors in [2,8,9] consider the simplified system

Ou+u-Vu— psAu+Vr=-V-(VmeVm)+ V- (FFT),
V-u=0,
OF +u-VF — (Vu)'F = kAF,
om+u-Vm=Am — 5—12(|m|2 — 1)m,
where the constraint |[m| = 1 is replaced by the Ginzburg-Landau penalization term Ei2(|m|2 —1)2.

In [2], the author adapted the approach in [10] to show the existence of weak solutions to (1.2) with the
combination of a Galerkin approximation scheme and a fixed point argument. The weak-strong uniqueness
of solutions to (1.2) was established in [9] under the Prodi-Serrin condition. In case the initial values have
higher regularity, the authors in [8] obtained the well-posedness of strong solutions to (1.2) via a priori
estimates that are uniform in the approximate solutions.

We would like to point out that the regularization term kAF in (1.1) and (1.2) with 0 < kK < 1 plays an
important role in the mathematical analysis. If x = 0, the evolution of the deformation tensor field becomes
hyperbolic, and in this case, even in 2D, the existence of weak solutions to incompressible viscoelastic fluids
(m = 0) with large initial data remains an open problem. Local well-posedness of strong solutions to (1.2)
without the regularization term was established in [11] in a periodic domain in two or three dimensions.

From the viewpoint of modeling, F' = 0 represents a liquid phase that contains no elastic solid particles.
We refer the reader to [12] for more details.
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To the best of our knowledge, there are so far no existence results for system (1.1) in 3D. In our approach,
we consider (1.1) as a quasilinear system and prove that the system is parabolic. We can then apply the
theory of maximal L,- regularity to establish short time existence and uniqueness of strong solutions, see
Theorem 2.5. In Sections 3 and 4, we show that the set of equilibria of (1.1) is given by

&= {(07 03, M., '/T*)}v
where m, € H, 3((), R3) solves the nonlinear constrained elliptic problem
Am, + |Vm*\2m* =0 in £,
Im«|=1 in £, (1.3)
o,m,=0 on 01

and m, = —%|Vm,.<|2 + C for some constant C'.
In particular, we have that

E. = {(0,05,m,,7m,) € R3 x M3 x $? xR} C €.

We call £, the set of constant equilibria. We can prove that all constant equilibria are normally stable, and
that each solution that starts out close to a constant equilibrium exists globally and converges to a (possibly
different) constant equilibrium. Moreover, we show that any solution that is bounded in an appropriate
topology exists globally and converges to the set £ of equilibria.

In case we choose (ug, Fy) = (0,0), system (1.1) reduces to the well-known Landau—Lifshitz—Gilbert

equation
om = —am x (mx Am) —pm x Am in Ry x 2,
o,m=20 on Ry x990,
(1.4)
|m| =1 in Ry x £,
m(0) = myg in  £.

In this case, we obtain the energy dissipation relation

4 1|Vm|2dx: —/ al Am 4 |[Vm|*m|? da.
dt |, 2 o

By the same arguments as in Section 4, we can conclude that the set of equilibria of (1.4) is given by the solu-
tions of (1.3). Hence, all the results established for system (1.1) remain true for the Landau-Lifshitz—Gilbert
equation. A similar result was obtained in [13] in case 2 = R™ with n > 3.

Finally, we mention that all of our results remain valid in 2D, that is, in case 2 C R? and (u, F,m) : 2 —
R2 x M2 x R3.

Notation: For the readers’ convenience, we list here some notation and conventions used throughout the
manuscript.

In the following, all vectors a = (a1, ..., a,) € R™ are viewed as column vectors. For two vectors a,b € R™,
the Euclidean inner product is denoted by a - b. Given two matrices A, B € M", the Frobenius matrix inner
product A : B is given by

A:B=Tr(AB"),
where T is the transpose. Suppose 2 is an open subset of R™. If u € C1(£2;R"™), we set Vu(z) = ¢; ® dju(z)
for x € 2. Hence, for u = (uy,...,u,) € C1(£2;R™), we have

[Vu(x)]i; = Ouj(x), 1<i,j<n, €l (1.5)

We note that [Vu(z)]T corresponds to the Fréchet derivative of u at x € £2.
3
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If Ae CY(2;M"), its divergence V - A is the vector function defined by
(V- A)(z) = (0;A(x))Te;, =€ Q. (1.6)
Hence, if A = [a;;] € C*(£2;M™), its divergence is given by
(V- A)(z)]; = 0ja5(x), i=1,...,n, x €

Here and in the sequel, we use the summation convention, indicating that terms with repeated indices are
added. We note that (1.5) and (1.6) imply

V- (Vu) = Au, u e C?*(2;R"),

and
(V-A) - u=V-(Au) —A:Vu, AcCY2;M"), uec C'(2;R"). (1.7)

For a matrix A € C'(£2;M"), we set |VA|]> = ;A4 : 9 A.
For functions f,g € La(§2;R™),

(f\g)nz/gﬁgdx

denotes the Lo-inner product. For any Banach space X, s > 0, p,q € (1,00), By, (£2; X) denote the X —
valued Besov spaces, whereas H ;(Q; X)) are the Bessel-potential spaces. When the choice of X is clear from
the context, we will just write By (£2) or H(12).

For p € (1,00) and p € (0,1], the X-valued L,-spaces with temporal weight are defined by

Lpu((0,7); X) = {f : (0,T) = X = t'7"f(t) € Ly((0,T); X) } .
Similarly,
H,,((0,T); X) = {f € Lp,u((0,7); X) N H{((0,T); X) = f'(t) € Lp,u((0,T); X)} .
For any two Banach spaces X and Y, the notation £(X,Y") stands for the set of all bounded linear maps
from X to Y and £(X) = L(X, X).

2. Existence and uniqueness of solutions

In this section, we show how to formulate system (1.1) as a quasilinear equation. Using the theory of
maximal L,-regularity, we establish existence and uniqueness of local in time solutions, and we show that
solutions have additional time regularity. We start by expressing the term

am X (m x Am) + fm x Am

in a form that is more convenient for our analysis. By the well-known identity a x (b x ¢) = (a-¢)b— (a- b)c,
we have
m x (m x Am) = (m - Am)m — |m|? Am.

By using the facts that [m| =1 and 0 = Ajm|* = 2|Vm|? + 2 m - Am, we obtain
m x (m x Am) = —(Am + |[Vm/|* m), (2.1)

provided m is sufficiently smooth. Setting

0 —ms3 mo
M(m) = | ms 0 —my|, m=(my,ma,ms),
—TMa my 0

4
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we can write m x Am = M(m)Am. Hence, under the constraint |m| =1, (1.1) is equivalent to the following

system
Ou+u-Vu—psAu+Vr=-V-(VmeOVm)+V-(FFT) in Ry x4,
V-ou=0 in Ry x 0,
u=0 on R, x 082,
OF — kAF = (Vu)'F —u-VF in Ry x 0,
F=0 on R, x99, (2.2)
om +u-Vm = (alz — BM(m))Am +a|Vm[* m in Ry x 2,
0,m=20 on R, x 02,
|m| =1 in Ry x £,
(u(0), F(0),m(0)) = (uo, Fo, mo) in £,

where I3 is the 3 x 3 identity matrix. Neglecting the constraint |m| = 1, we have

Ou+u-Vu—psAu+Vr=-V-(VmeOVm)+V-(FFT) in Ry x4,

V-u=0 in Ry x {2
u=0 on R, x 02,
OF — KAF = (Vu) F —u-VF in Ry x, (2.3)
F=0 on R, x 02,
Om+u-Vm = (als — M(m))Am + a|Vm|* m in Ry x 2,
d,m =10 on R, x 92,
(u(0), F(0), m(0)) = (uo, Fo,mo) in 0.

We will first study the unconstrained system (2.3), and then show in a second step that the constraint
|m| =1 is preserved in case |mg| = 1.
The main tool to study (2.3) is the theory of maximal L,-regularity. For 6 € (0, 7], the open sector with
angle 26 is denoted by
Yo ={weC\{0}: |argw| < 6}.

Definition 2.1. Let X be a complex Banach space, and A be a densely defined closed linear operator in
X with dense range. A is called sectorial if Xy C p(—.A) for some 6 > 0 and

sup{[[AA + A) " Hlzx) 1 A € Zp} < o0
The class of sectorial operators in X is denoted by S(X).

To introduce the notion of maximal L,-regularity, let us consider the following abstract Cauchy problem
on [0,7]

(2.4)

Owu(t) + Au(t) = f(t), te(0,7),
u(0) = 0.

Definition 2.2. Assume that X3 Jy X is some densely embedded Banach couple. Suppose that A4 € S(X)
with D(A) = X;. The operator A is said to have the property of maximal L-regularity if for any fixed T' > 0
and
e Lp((oa T)? Xo),
5
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(2.4) has a unique solution
u € Ly((0,T); X1) N Hy ((0,T); Xo).

We denote the set of all operators A € S(X) which enjoy the property of maximal L,-regularity by

A e MR, (X7, Xo).

We refer to [14] for additional background information.
Let Py : Ly(£2;R?) — L, ,(2;R?) be the Helmholtz projection, where
Ly (2;R%) = P (Lq(12;RY))
is the space of all solenoidal vector fields in L,(£2;R3). Setting
H (23 R?) = HI(2;R%) N Ly o (25 R?),
we let A, : D(A,) = Ly (£2;R?) be the Stokes operator, defined by
Aqu = —psPyAu, D(Ag) = {u € H, ;(2;R*) :u=0on 002}.
Similarly, we can define G, : D(G,) — L,(§2; M?) by
G, F = —rAF, D(G,) ={F ¢ Hg(Q;M3) : F'=0on 002}.
Further, given any m € C(£2;R3), the operator D,(m) : D(Dy(m)) — L,(£2;R?) is defined by
Dy(m)h := —(alz — SM(m))Ah,
D(Dy(m)) = {h € H;(2;R%) : 9,h = 0 on 912}.

Next, we set

It follows that
By(m)m =V - (Vm® Vm) for each m € Hg(Q;R?’). (2.6)

Note that By(m) € L(D(Dy(m)), Ly(2;R?)) for any m € C*(2;R?). Finally, we define the spaces
Xo = Ly o (2;R?) x Ly(2;M?) x L,(2;R?)
and
X1 = D(Aq) x D(Gq) x D(Dy(m)).

It is well known that A, and G, enjoy the property of maximal L,-regularity, cf. [15-17] and [14, Section
6.3, Chapter 7]. To deal with D,(m) for m € C(2;R3), we set

Dy(m(x),€) = (als — AM(m(x)))[§]*, = €2, R,
for the symbol of the differential operator D,(m). An easy computation shows that
7(Dg(m(x),8)) = {a,a £iflm(z)]}, 2 €2, €8

where o denotes the spectrum. Since m € C(2;R3), D,y(m(z),£) is normally elliptic for every z € 2, see
for instance [14, Definition 6.1.1]. By [14, Theorem 6.3.2], Dqy(m) has the property of maximal L,-regularity.
Then, the operator A, : X; — X defined by

0 PHBq (m)
G, 0 (2.7)
0 Dy(m)

Aq
Agm)=]0
0

6
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enjoys the property of maximal L,-regularity for every m € C*(£2;R3) as well, due to its upper triangular
structure.
Indeed, given any f = (f1, fa, f3) € Lp((0,T); Xo), we consider the system

{8tz+Aq(m)z = f(t), te(0,7),

00 (2.8)

where z = (v,G,h). By the maximal L,-regularity property of G, and Dy(m), one can find for each
m € C(£2;R3) a (unique) solution

(9.h) € Lp((0,T); H(12; M* x R*)) N H,((0,T); Lg(£2; M? x R?))

for the system
atG+qu = f2 in Q,

G=0 on 0f2,
8th+Dq(m)h = f3 in Q,
d,h =0 on 0f2,

(G(0),1(0)) = (0,0).

Easy computations show that By(m)h € L,((0,T); Ly(2;R3)) for m € C*(£2;R3). From the maximal L,-
regularity property of A,, we thus infer that there exists a (unique) vector v € L,((0,T); H, 370(9;R3)) N
H}((0,T); Lg,»(£2;R?)) that solves

0w+ Agv = —PgBg(m)h+ fr in {2,
v=20 on 0f2,
v(0) = 0.
Hence (v, G, h) is the unique solution of (2.8). This shows that
A (m) € MR,(X1,Xp) for each m € C*(2;R?). (2.9)
In addition, we define for z = (u, F,m)
G(z):=(Py [V-(FF") —u-Vu],(Vu)"F —u-VFE,a/Vm*> m —u-Vm) . (2.10)
Given any 1 < p,q < oo, T >0 and p € (1/p, 1], we set
Eou(T) = Lyu((0.T); Xo) and  Eyu(T) = Ly, ((0,T); X1) 1 HE,((0,T); Xo).
It is well known that
E1,u(T) = C([0, T} X,,)  where X, = (Xo, X1) - 1/p,p-

See [18], or [14, Theorem 3.4.8]. Observe that by [19, Theorem 3.4] and [20, Theorem 4.3.3], the triple
(u,F,m) € 335—2/17(_(3;]1%15) belongs to X, ,, iff

we B2 2P(QR?) and =0 ondL,

Fe B2 2/P(;M?) and F =0on0dR, (2.11)
m € Bg;iQ/p(Q;]Rg) and J,m =0 on 912,

where 3357;2/’)(!2;11%3) = 335‘2”’(9;]12{3) N Ly - (£2;R3). In order for d,m to be defined, we assume that
2u—2/p—1/q > 1.
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One readily verifies that
Ay € C¥( X, 4, L(X1,X0)), GeC¥X,u,Xo)s (2.12)
with w being the notation for real analyticity, as long as
X, = CHO2;RY).

The above embedding holds whenever p € % + % + 23—(17 1.
By the definitions (2.5), (2.7) and (2.10), and the relation (2.6), one sees that system (2.3) can be recast
as the abstract evolutionary system

Oz + Ag(m)z = G(2), 2(0) = 2o = (uo, Fo, mo). (2.13)

We have the following result on existence and uniqueness of solutions of (2.13).

Proposition 2.3. Suppose p € (% + % + 237;’ 1] and let zo € X, . Then there exists T = T(zy) such
that the evolution equation (2.13) admits a unique solution z € Eq ,,(T). Each solution can be extended to a
mazimal ezistence interval [0, T4 (z0)) in the sense that

(i) either T4 (zp) = oo or
(i) limy 7, () z(t) does not exist in X, .

Moreover, z enjoys the additional regularity properties

2 € C([0,T4); X,,,) NC¥((0,T4); X1) N C¥((0,T4) x 2;R). (2.14)

Proof. The existence, uniqueness and time regularity follow from (2.9), (2.12) and [14, Theorems 5.1.1 and
5.2.1 and Corollary 5.1.2], see also [21, Theorem 2.1]. The joint space-time regularity (2.14) can be proved
by means of the parameter trick in [22], see also [14, Section 9.4.1]. O

Next, we show that solutions of (2.13) give rise to solutions of (2.3), and vice versa.

Proposition 2.4. Let T > 0 be given. The following statements are equivalent:

(a) (2.13) has a solution (u, F,m) € Ey ,(T).
(b) (2.3) has a solution (u, F,m,m) € Eq ,(T) x vau((O,T);qu(Q)).

Proof. (a)=(b): Suppose z = (u, F,m) € Ey ,(T') solves (2.13) on [0,T)]. Let
v=psAu—u-Vu—V-(VmeVm)+V-(FFT).
Then v € Ly, ,((0,T); Ly(£2; R?)). For t € (0,T), let Vb, (1) € Lq(£2;R?) be the unique solution of

(Vo) |V), = (0(t)|Vd) e, Vo€ Hy(1),

where (-|-) ¢ is the inner product of Ly(£2;R?) and ¢/ is the Holder dual of g. Then Pru(t) = v(t) — Vb
by the definition of the Helmholtz projection. Let @ = 1),. Then m € Lp#((O,T);H;(Q)), and noting
that PpOu = Owu, we conclude that (u, F,m, ) is a solution of (2.3) in the regularity class Eq ,(T) x
Lp,u((ovT)QH;(Q)) )
(b)=-(a): Suppose (u, F,m, ) € Eq,,(T) X Ly, ,.((0,T); H}(12)) solves (2.3). Applying Py to the equation
governing w in (2.3), it is an easy task to check that (u, F,m) € E; ,(T') solves (2.13). O
8
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We are now ready for our main result on existence and uniqueness of solutions for system (2.2), or
equivalently, system (1.1).

Theorem 2.5. Letp,q€ (1,00) and p € (% + zl? + 2%, 1]. Suppose that
20 = (uo, Fo,mo) € Beh,2/P(2;R?) x Bt ~2/P(02;MP) x Bga~/P(2;R?)
satisfies the compatibility conditions (ug, Fy, 0,mg) = 0 on 012. Then there exists a unique solution

(u, F,m,m) € [H;,H((O,T);XO) X Ly, ((0,T); X1)] x Lp,#((O,T);H;(Q))

of (2.3) for some T =T (z9) > 0. Each solution can be extended to a mazximal existence interval [0, T4 (20)).
Moreover, (z,7) = (u, F,m, ) enjoys the additional reqularity

2 € C([0,T4); X)) NC¥((0,T4); X1) and (z,7) € C¥((0,Ty) x 2;R*). (2.15)
If Img| = 1, then the solution also satisfies

MmO =1, t€0,T:(z)). (2.16)

Proof. The assertions in the first part of the statement follow readily from Propositions 2.3 and 2.4. Tt
then only remains to show that the condition |m(t)| = 1 holds for every ¢ € [0, T (z0)), provided |mg| = 1.
Suppose then that |mg| = 1. Let T € (0,7 (20)) be fixed and set ¢ = |m|? — 1. We note that

m e C'((0,T); H; (2;R?))
@ € C([0,T]; B242/7(2)) N C*((0,T); HZ (£2)).

Indeed, (2.15) implies that m € C([O,T];ngiQ/p(Q;Rg’)) N CY((0,T); HZ(2;R?)). The condition p €

(% + % + 2%, 1} guarantees that B4~ 2/?(02) and H 2(£2) are Banach algebras. The asserted regularity of

 thus holds. Taking the dot product of the equation
om +u-Vm = a(Am+|Vm|* m) — fm x Am
with m and using the relations d;|m|? = 20;m - m, Alm|?> = 2Am - m + 2|Vm|? results in

dro+u-Vo—alp —2a|Vm|?p=0 in £,

O,p=0 on 02, (2.17)
¢(0) = 0.
Multiplying both sides of (2.17) with ¢ and integrating over {2 yields
d 1
— fgonx—i—oz/ |V<,0|2d1::2a/ |Vm|?p?de, t€(0,T).
dt Jo 2 Q 0
As m e C([0,T]; B2~2P(1;R?)) — C([0,T]; C*(£2; R?)), we obtain the following integral inequality
d 2 2 2
— | ¢*(t)dx < 4a||Vm(t)|s, | ¢ (t)dz, te (0,T).

Applying the Gronwall inequality we get

T
2 < 2 2 —0.
OréltaSXT/Qgp (t) dx < exp (4&/0 ||Vm(t)||oodx> /ng (0)dz =0

This implies ¢ = 0 in Q7 = [0, 7] x £2. In other words, |m| = 1 in Q7. As this is true for every T € (0,7 (20))
we obtain that |m(t)] = 1 for any ¢ € (0,74 (z0)). As (1.1) and (2.2) are equivalent, we have proved the
assertions of the theorem. [



H. Du, Y. Shao and G. Simonett Nonlinear Analysis: Real World Applications 69 (2023) 103759

Remark 2.6. Let p, g, u be as in Theorem 2.5. The assertions of Theorem 2.5, with exception of the higher
time regularity stated in (2.15), still hold if we pose the nonhomogeneous boundary conditions

(u, F,m) = (up, Fp,my) on 012, (2.18)

where
up € Fjot/29((0,T); Ly(092;R?)) N Ly, ((0,T); W2~ 9(002; R?))
Fp € Fpy t/29((0,T); Lg(992;MP)) 0 Ly, (0, T); W7~ 9(092; M?))
my € Fo/27129((0,T); Ly(002;R?) N Ly, ,((0,T); Wi~ 4002, R?))

Pa,p
and the initial data satisfy the compatibility conditions

(up(0), Fp(0), mn(0)) = (ug, Fo,0mg) on 9f2.

See [14, Theorem 6.3.2]. Here F

pq,p are the Triebel-Lizorkin spaces with temporal weight.

3. Stability and asymptotic behavior

The last two sections are devoted to a discussion of the asymptotic behavior of solutions (u, F,m, ) to
(1.1). In view of Proposition 2.4, the pressure 7 can be obtained from z = (u, F,m). For this reason, it
suffices to restrict our attention to a solution z = (u, F,m) of (2.13).

The 3-dimensional subspace
Eo == {0} x {03} x R? of X

is clearly contained in the set &; of equilibria of (2.13), where 03 is the 3 x 3 matrix with zero entries. We
refer to Remark 4.3(a) for more information on &;.
At each z, = (0,03, m,) € &, the linearization of (2.13) is given by

Oz + Az =0, 2(0) = 2o, (3.1)

where z = (u, F,m) and
Asz = (—ps Py Au, =k AF, (BM(m..) — alz) Am).

Since {2 is bounded, the spectrum of A, consists only of eigenvalues. Suppose that A,z = Az for some A € C.
By elliptic regularity theory, we can assume that z € H, 3(!2; C') for ¢ > 2. Taking the inner product of
A,z = Az with Z, where Z denotes the complex conjugate of z, direct computations lead to

Re X ([[ull3 + P13 + Iml3) = pslVull3 + & VEIS + o Vml]3,
which implies that Re A > 0. Here we have used the anti-symmetry of M(m,) to conclude that
Re (M(my)Am|m)o = 0.
Indeed, as the entries of M(m.) are constant, we obtain
(M(m.) Am[m) o = (A(M(m.)m)[m) e = (M(m.)m[Am)q,

where we set z - W = z;w; for z,w € C3. The anti-symmetry of M(m,) implies

(M(m.) Am|m) o = —(Am|M(m.)m) o = —(M(m.)m|Am).,.
This readily yields Re (M(m.)Am|m)o; = 0. When Re A = 0, one concludes from the above that

[Vulla = [VE[ls = [[Vmlls = 0.

10
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Combined with the boundary conditions, this shows that z = (u, F, m) € &y. Further, we infer that A,z = 0.
Thus o(A.) NiR = {0} and N(A,) = &.

To show {0} is a semi-simple eigenvalue, we will prove that N(A,) = N(A?). Assume that w = (v, f,h) €
N(A?). Then there exists z = (0,03, m) € N(A,) such that A,w = z. Then by the divergence theorem, the
boundary condition d,h = 0 and the fact that m as well as m, are constant,

1213 = (Asw|z) = (BM(m.) — al3) Ahlm) = 0.

We conclude that z = 0 and thus w € N(A,). This shows that {0} is semi-simple. As & is a linear space,
we clearly have T, & = N(A,).

If follows from [23, Remark 2.2], see also [14, Remarks 5.3.2], that all equilibria close to z, are contained
in a manifold M of dimension 3 = dim(N(A.)), where we used the fact that the center space X¢ coincides
with N(A,) as {0} is semi-simple. Since the dimension of & is also 3, we conclude that there exists an open
neighborhood V, C X; of z, such that M NV, = & N V.. Hence, the neighborhood V, contains no other
equilibria than the elements of &, that is, V., N & = V., N &;.

We have, thus, shown that z, is normally stable, see [14, Theorem 5.3.1] for a definition.

Theorem 3.1. Letp,q € (1,00) and p € (% + 1% + 2%, 1].

Then each equilibrium z, = (0,03, m.) with m, € S? is stable in the topology of X, - There exists
e > 0 such that any solution (u, F,m, ) of (1.1) with initial value zo = (uo, Fo,mo) € X, . satisfying
20 — 2l x,,, < e exists globally and converges to some zo = (0,03, Moo) with Mo, € S* in the topology of
X1 at an exponential rate ast — oo.

Proof. Given an equilibrium z, = (0,03,m.) € &y, we infer from [14, Theorem 5.3.1] and [24,
Proposition 5.1] that there exists & > 0 such that any solution z = (u, F,m) of (2.13) with initial data
20 = (uo, Fo,mo) € X, satisfying the conditions |mo| = 1 and ||z — 2.]|x,, < € exists globally and
converges at an exponential rate to some zo, = (0,03, Mmoo ) With ms, = constant, in the topology of X, 1 as
t — oo. By Proposition 2.4, we can determine a pressure 7 such that (z,7) solves (2.3) on Ry . Furthermore,
since |mg| = 1, we infer that |m(t)| = 1 for all ¢ > 0, which implies that (z,7) solves (1.1) on R. Finally,
we conclude that mo, € S2. O

4. Lyapunov functional and global solutions

Let
E = E(u, F,m) — %/ (luf? + |F|? + |Vm|?) da. (4.1)
2

We show that the energy E is dissipated.

Proposition 4.1.  Let (u, F,m,m) be a solution of (1.1) with initial value zo satisfying the assertions of

Theorem 2.5. Then
d

%E(t) = f/ (us|Vu(t,:c)|2 + k|VF(t,z)]? + a|Am(t, z) + |[Vm(t, z)|*m(t, z) |2) dx
Q

fort € (0,T4+(20)). Moreover, E is a strict Lyapunov functional for (1.1).

Proof. Let zg be an initial value satisfying the assumptions of Theorem 2.5. Then (1.1) admits a unique
solution (u, Fym, ) in the regularity class stated in the Theorem. In particular, z = (u, F,m) enjoys the
regularity property

2 € C([0,T4); Xq,u) N Cl((O,T+);X1)7

11
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with T4 = T4(z). In the following, we suppress the time variable ¢ € (0,7%). A straightforward
computation, using the boundary condition 9, m = 0, yields

iE:/ (Oiu-u+ O F : F— 0ym - Am) dz.
dt Q
We have

/atu-udw:/ [tsAu—u-Vu—Vr =V - (VmeVm)+ V- (FFT)]| - udz
7} 7}

(4.2)
= / (—ps|Vul* = (u-Vm) - Am — FF : Vu) dz,
2
where we used V - u = 0, the boundary condition © = 0 on 942, (1.7), and the relations
1
V- (VmoVm)=VmAm+ §V(|Vm|2), (Vm Am) -u = (u-Vm)- Am.
Moreover,
/ OF : Fdx = / [(Vu)TF —u-VF + kAF] : Fdx
I?) 2 (4.3)
:/ (FFT :Vu—k|VF[?) dz,
Q
where we employed the condition V - u = 0, the boundary condition F' = 0 on 92, and the relations
(Vu)'F:F=FF":Vu, 2(u-VF):F=u-V|FJ?
Observing that (Oym + u - Vm) - m = 0, we obtain
/ (Om+u-Vm) - Amdz = / (Oym +u-Vm) - (Am + |Vm|? m) dz
Q Q
= / (a(Am + |[Vm|?> m) — Bm x Am) - (Am + |Vm|* m) dz (4.4)
2

= a/ |Am + |[Vm|* m|? dx
7

as m X Am is perpendicular to both m and Am. Combining the results in (4.2)—(4.4) readily yields the
assertion.

Hence, E is non-increasing along solutions and, thus, is a Lyapunov functional. If, for any time ¢ € I :=
(t1,t2) C (0,4 (20)) with some 0 < t; < ta, £E(t) =0, then

IVu®)llz = IVF()ll2 = | Am(t) + [Vm(t)*m(t)||2 = 0.
Combining with the boundary conditions, we infer that
u(t)=0, F(t)=0s, tel.

This readily yields (9;u(t), 9, F(t)) = (0,03) for all t € I. Moreover, the condition || Am(t)+|Vm(¢)[?>m(t)|2 =
0 implies that
Am(t) + |[Vm)*m(t) =0 in 2, tel. (4.5)
Taking the cross product of both sides of (4.5) by m(t) yields
m(t) x Am(t) = —|Vm(t)*m(t) x m(t) =0 in £2.

Therefore, Oym(t) = 0 for all t € I. Hence, (Qzu(t), 0:F(t),0ym(t)) = (0,0s5,0) for all ¢ € I, and this means
that the system is at equilibrium for ¢ € I. To sum up, we have proved that E : X, , — R is a strict
Lyapunov functional for (1.1). O

12
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The arguments above additionally yield a characterization of the set of equilibria of (1.1).

Corollary 4.2. The set of equilibria of (1.1) is given by
E ={(0,03,my, )}, (4.6)
where m, € Hg((?) solves the constrained nonlinear elliptic problem

Amy, + |Vm*|2m* =0 in {2,
Im«|=1 in £, (4.7)
O,m, =0 on 901,

and T, = —%|Vm,.<|2 + C for some constant C.

Proof. We have already shown in the proof of Proposition 4.1 that any equilibrium of (1.1) is given by
(0,03, m,), where m, solves (4.7). Hence, at equilibrium, we are left with the relation Vr, = =V - (Vm, ®
Vm.). We have

1 1
= 0ymiy - M| V. |? — §8i|Vm*|2 = —§8i|Vm*|2,

where we used the relations Am, = —|Vm.|*m. and 9;m. - m, = %8¢|m*|2 = 0. Hence, V7, = —%V|Vm*|2
and the assertion for 7, follows. O

Remark 4.3. (a) We note that for solutions of system (2.3), that is, in case the condition |m| = 1 is
dropped in (2.2), we can only conclude that

%E = */Q (1s|Vul? + k| VF|* + a(|Am[* + |Vm|*(m - Am))) dz.
As the term m - Am does not have a sign, we can no longer derive the characterization (4.6) for the set of
equilibria, &, of (2.3), respectively (2.13). However, as shown in Section 3, we can conclude that for every
ze € & there exists a neighborhood V, in X7 such that & NV, =& NV,.

(b) It is claimed in [25, Lemma 5.2], see also Priiss and Simonett [14, Lemma 12.2.4], that the nonlinear
problem (4.7) admits only constant solutions m. € S%. However, this assertion is not correct in the form
stated, as the following example shows: Let 2 = {z € R®: 0 < r; < |z| < r2} and m, : 2 — S? be defined
by m.(x) = x/|z|. Then m, is a (non-constant) solution of (4.7).

Theorem 4.4. Let p,q, p, z0 and T4 (z0) be as in Theorem 2.5. Suppose that the solution (u, F,m,m) of
(1.1) satisfies

z = (u,F,m) € BC([0,T4+(20)); X+,1)
for some § € (0,T4(20)) and pp € (u,1]. Then z exists globally and dist(u(t),€) — 0 in X, 1 ast — oo,
where £ is the set of equilibria of (1.1).

Proof. Given any initial value zp, we define the w-limit set of (2.13) as
w(20) ={w € X, : Ftp = 0o s.t. [[2(tn) —wllx,, =0asn— oo}

[14, Theorem 5.7.1] implies that z(-) exists globally and the orbit {z(t)}:>s is relatively compact in X, ;.
By [14, Theorem 5.7.2], w(zp) is nonempty, compact and w(zg) C €. Further, we can infer that dist(z(¢),&) —
Oin X, ast—o00. U
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