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a b s t r a c t

We show that the system of equations describing a magnetoviscoelastic fluid in
three dimensions can be cast as a quasilinear parabolic system. Using the theory
of maximal Lp-regularity, we establish existence and uniqueness of local strong
solutions and we show that each solution is smooth (in fact analytic) in space and
time. Moreover, we give a complete characterization of the set of equilibria and
show that solutions that start out close to a constant equilibrium exist globally
and converge to a (possibly different) constant equilibrium. Finally, we show that
every solution that is eventually bounded in the topology of the state space exists
globally and converges to the set of equilibria.
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1. Introduction

We will study the following system of equations that models the evolution of a magnetoviscoelastic fluid⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ u · ∇u− µs∆u+ ∇π = −∇ · (∇m⊙ ∇m) + ∇ · (FFT) in R+ × Ω ,

∇ · u = 0 in R+ × Ω ,

u = 0 on R+ × ∂Ω ,

∂tF + u · ∇F − (∇u)TF = κ∆F in R+ × Ω ,

F = 0 on R+ × ∂Ω ,

∂tm+ u · ∇m = −αm× (m× ∆m) − βm× ∆m in R+ × Ω ,

∂νm = 0 on R+ × ∂Ω ,

|m| = 1 in R+ × Ω ,

(u(0), F (0),m(0)) = (u0, F0,m0) in Ω .

(1.1)
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Here, Ω ⊂ R3 is a bounded connected C3-domain with outward unit normal field ν. The unknowns
u, F,m) : R+ × Ω → R3 × M3 × R3 denote the fluid velocity, the deformation tensor field and the
agnetization field, respectively, while π is the pressure. Moreover, M3 stands for the set of all (3 × 3)-real
atrices. The parameters α, β > 0 are the so-called Gilbert damping and the exchange constant, while µs

nd κ are the dynamic viscosity and dissipative coefficient, respectively.
he notation ∇m ⊙ ∇m means ∇m(∇m)T. Hence, ∇m ⊙ ∇m is a symmetric tensor with coefficients

∇m⊙ ∇m]ij = ∂im · ∂jm.
(1.1) is a coupled system of equations containing

• the incompressible Navier–Stokes equations for the velocity field u and including in addition magnetic
and elastic terms in the stress tensor,

• a transport-stretch-dissipative system for the deformation tensor F ,
• a convected Landau–Lifshitz–Gilbert system for the magnetization field m.

s a multi-physical hydrodynamics model, (1.1) enjoys the following energy dissipation property:

d

dt

∫
Ω

1
2
(
|u|2 + |F |2 + |∇m|2

)
dx = −

∫
Ω

(
µs|∇u|2 + κ|∇F |2 + α|∆m+ |∇m|2m |2

)
dx,

see Proposition 4.1.
The system (1.1) was first introduced in [1,2]. This model can describe the motion of fluids with

micromagnetic and elastic particles such as ferrofluids [3,4] and magnetorheological fluids [5]. Existence
of weak solutions in 2D was established in [1] under a smallness condition on the initial data by using a
Galerkin approximation. In [6], the authors extended these results under more general assumptions on the
elastic energy density. Moreover, they proved local-in-time existence of strong solutions and they established
a weak-strong uniqueness property. Recently, the authors in [7] obtained global weak solutions to (1.1) with
partial regularity in a 2D periodic domain by a careful blow-up analysis near singularities.

The main difficulty in constructing global weak solutions to (1.1) is caused by the lack of sufficient
integrability in the a priori energy estimates for the stress tensor term ∇m⊙ ∇m.

In 3D, the authors in [2,8,9] consider the simplified system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu+ u · ∇u− µs∆u+ ∇π = −∇ · (∇m⊙ ∇m) + ∇ · (FFT),
∇ · u = 0,

∂tF + u · ∇F − (∇u)TF = κ∆F,

∂tm+ u · ∇m = ∆m− 1
ε2 (|m|2 − 1)m,

(1.2)

here the constraint |m| ≡ 1 is replaced by the Ginzburg–Landau penalization term 1
ε2 (|m|2 − 1)2.

In [2], the author adapted the approach in [10] to show the existence of weak solutions to (1.2) with the
combination of a Galerkin approximation scheme and a fixed point argument. The weak-strong uniqueness
of solutions to (1.2) was established in [9] under the Prodi–Serrin condition. In case the initial values have
higher regularity, the authors in [8] obtained the well-posedness of strong solutions to (1.2) via a priori
estimates that are uniform in the approximate solutions.

We would like to point out that the regularization term κ∆F in (1.1) and (1.2) with 0 < κ ≪ 1 plays an
important role in the mathematical analysis. If κ = 0, the evolution of the deformation tensor field becomes
hyperbolic, and in this case, even in 2D, the existence of weak solutions to incompressible viscoelastic fluids
(m = 0) with large initial data remains an open problem. Local well-posedness of strong solutions to (1.2)
without the regularization term was established in [11] in a periodic domain in two or three dimensions.

From the viewpoint of modeling, F = 0 represents a liquid phase that contains no elastic solid particles.
We refer the reader to [12] for more details.
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To the best of our knowledge, there are so far no existence results for system (1.1) in 3D. In our approach,
we consider (1.1) as a quasilinear system and prove that the system is parabolic. We can then apply the
theory of maximal Lp- regularity to establish short time existence and uniqueness of strong solutions, see

heorem 2.5. In Sections 3 and 4, we show that the set of equilibria of (1.1) is given by

E = {(0, 03,m∗, π∗)},

here m∗ ∈ H2
q (Ω ,R3) solves the nonlinear constrained elliptic problem⎧⎪⎨⎪⎩

∆m∗ + |∇m∗|2m∗ = 0 in Ω ,

|m∗| ≡ 1 in Ω ,

∂νm∗ = 0 on ∂Ω

(1.3)

nd π∗ = − 1
2 |∇m∗|2 + C for some constant C.

In particular, we have that

Ec := {(0, 03,m∗, π∗) ∈ R3 × M3 × S2 × R} ⊂ E .

We call Ec the set of constant equilibria. We can prove that all constant equilibria are normally stable, and
that each solution that starts out close to a constant equilibrium exists globally and converges to a (possibly
different) constant equilibrium. Moreover, we show that any solution that is bounded in an appropriate
topology exists globally and converges to the set E of equilibria.

In case we choose (u0, F0) = (0, 0), system (1.1) reduces to the well-known Landau–Lifshitz–Gilbert
equation ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tm = −αm× (m× ∆m) − βm× ∆m in R+ × Ω ,

∂νm = 0 on R+ × ∂Ω ,

|m| = 1 in R+ × Ω ,

m(0) = m0 in Ω .

(1.4)

In this case, we obtain the energy dissipation relation
d

dt

∫
Ω

1
2 |∇m|2 dx = −

∫
Ω

α|∆m+ |∇m|2m |2 dx.

By the same arguments as in Section 4, we can conclude that the set of equilibria of (1.4) is given by the solu-
tions of (1.3). Hence, all the results established for system (1.1) remain true for the Landau–Lifshitz–Gilbert
equation. A similar result was obtained in [13] in case Ω = Rn with n ≥ 3.

Finally, we mention that all of our results remain valid in 2D, that is, in case Ω ⊂ R2 and (u, F,m) : Ω →
R2 × M2 × R3.

Notation: For the readers’ convenience, we list here some notation and conventions used throughout the
manuscript.

In the following, all vectors a = (a1, . . . , an) ∈ Rn are viewed as column vectors. For two vectors a, b ∈ Rn,
the Euclidean inner product is denoted by a · b. Given two matrices A,B ∈ Mn, the Frobenius matrix inner
product A : B is given by

A : B = Tr(ABT),

where T is the transpose. Suppose Ω is an open subset of Rn. If u ∈ C1(Ω ;Rn), we set ∇u(x) = ej ⊗ ∂ju(x)
for x ∈ Ω . Hence, for u = (u1, . . . , un) ∈ C1(Ω ;Rn), we have

[∇u(x)]ij = ∂iuj(x), 1 ≤ i, j ≤ n, x ∈ Ω . (1.5)

We note that [∇u(x)]T corresponds to the Fréchet derivative of u at x ∈ Ω .

3
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If A ∈ C1(Ω ;Mn), its divergence ∇ ·A is the vector function defined by

(∇ ·A)(x) = (∂jA(x))Tej , x ∈ Ω . (1.6)

Hence, if A = [aij ] ∈ C1(Ω ;Mn), its divergence is given by

[(∇ ·A)(x)]i = ∂jaji(x), i = 1, . . . , n, x ∈ Ω .

ere and in the sequel, we use the summation convention, indicating that terms with repeated indices are
dded. We note that (1.5) and (1.6) imply

∇ · (∇u) = ∆u, u ∈ C2(Ω ;Rn),

and
(∇ ·A) · u = ∇ · (Au) −A : ∇u, A ∈ C1(Ω ;Mn), u ∈ C1(Ω ;Rn). (1.7)

For a matrix A ∈ C1(Ω ;Mn), we set |∇A|2 = ∂jA : ∂jA.

For functions f, g ∈ L2(Ω ;Rm),
(f |g)Ω =

∫
Ω

f · g dx

denotes the L2-inner product. For any Banach space X, s ≥ 0, p, q ∈ (1,∞), Bs
pq(Ω ;X) denote the X−

valued Besov spaces, whereas Hs
q (Ω ;X) are the Bessel-potential spaces. When the choice of X is clear from

the context, we will just write Bs
pq(Ω) or Hs

q (Ω).
For p ∈ (1,∞) and µ ∈ (0, 1], the X-valued Lp-spaces with temporal weight are defined by

Lp,µ((0, T );X) :=
{
f : (0, T ) → X : t1−µf(t) ∈ Lp((0, T );X)

}
.

Similarly,

H1
p,µ((0, T );X) :=

{
f ∈ Lp,µ((0, T );X) ∩H1

1 ((0, T );X) : f ′(t) ∈ Lp,µ((0, T );X)
}
.

For any two Banach spaces X and Y , the notation L(X,Y ) stands for the set of all bounded linear maps
from X to Y and L(X) := L(X,X).

2. Existence and uniqueness of solutions

In this section, we show how to formulate system (1.1) as a quasilinear equation. Using the theory of
maximal Lp-regularity, we establish existence and uniqueness of local in time solutions, and we show that
solutions have additional time regularity. We start by expressing the term

αm× (m× ∆m) + βm× ∆m

in a form that is more convenient for our analysis. By the well-known identity a× (b× c) = (a · c)b− (a · b)c,
we have

m× (m× ∆m) = (m · ∆m)m− |m|2∆m.

By using the facts that |m| = 1 and 0 = ∆|m|2 = 2|∇m|2 + 2 m · ∆m, we obtain

m× (m× ∆m) = −(∆m+ |∇m|2 m), (2.1)

provided m is sufficiently smooth. Setting

M(m) =

⎡⎣ 0 −m3 m2
m3 0 −m1

⎤⎦ , m = (m1,m2,m3),

−m2 m1 0

4
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we can write m×∆m = M(m)∆m. Hence, under the constraint |m| ≡ 1, (1.1) is equivalent to the following
ystem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ u · ∇u− µs∆u+ ∇π = −∇ · (∇m⊙ ∇m) + ∇ · (FFT) in R+ × Ω ,

∇ · u = 0 in R+ × Ω ,

u = 0 on R+ × ∂Ω ,

∂tF − κ∆F = (∇u)TF − u · ∇F in R+ × Ω ,

F = 0 on R+ × ∂Ω ,

∂tm+ u · ∇m = (αI3 − βM(m))∆m+ α|∇m|2 m in R+ × Ω ,

∂νm = 0 on R+ × ∂Ω ,

|m| = 1 in R+ × Ω ,

(u(0), F (0),m(0)) = (u0, F0,m0) in Ω ,

(2.2)

where I3 is the 3 × 3 identity matrix. Neglecting the constraint |m| ≡ 1, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ u · ∇u− µs∆u+ ∇π = −∇ · (∇m⊙ ∇m) + ∇ · (FFT) in R+ × Ω ,

∇ · u = 0 in R+ × Ω ,

u = 0 on R+ × ∂Ω ,

∂tF − κ∆F = (∇u)TF − u · ∇F in R+ × Ω ,

F = 0 on R+ × ∂Ω ,

∂tm+ u · ∇m = (αI3 − βM(m))∆m+ α|∇m|2 m in R+ × Ω ,

∂νm = 0 on R+ × ∂Ω ,

(u(0), F (0),m(0)) = (u0, F0,m0) in Ω .

(2.3)

We will first study the unconstrained system (2.3), and then show in a second step that the constraint
|m| ≡ 1 is preserved in case |m0| ≡ 1.

The main tool to study (2.3) is the theory of maximal Lp-regularity. For θ ∈ (0, π], the open sector with
angle 2θ is denoted by

Σθ := {ω ∈ C \ {0} : | argω| < θ}.

Definition 2.1. Let X be a complex Banach space, and A be a densely defined closed linear operator in
X with dense range. A is called sectorial if Σθ ⊂ ρ(−A) for some θ > 0 and

sup{∥λ(λ+ A)−1∥L(X) : λ ∈ Σθ} < ∞.

The class of sectorial operators in X is denoted by S(X).

To introduce the notion of maximal Lp-regularity, let us consider the following abstract Cauchy problem
on [0, T ] {

∂tu(t) + Au(t) = f(t), t ∈ (0, T ),
u(0) = 0.

(2.4)

Definition 2.2. Assume that X1
d
↪→ X0 is some densely embedded Banach couple. Suppose that A ∈ S(X0)

with D(A) = X1. The operator A is said to have the property of maximal Lp-regularity if for any fixed T > 0
and
f ∈ Lp((0, T );X0),
5
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(2.4) has a unique solution
u ∈ Lp((0, T );X1) ∩H1

p ((0, T );X0).

e denote the set of all operators A ∈ S(X) which enjoy the property of maximal Lp-regularity by

A ∈ MRp(X1, X0).

e refer to [14] for additional background information.
Let PH : Lq(Ω ;R3) → Lq,σ(Ω ;R3) be the Helmholtz projection, where

Lq,σ(Ω ;R3) := PH(Lq(Ω ;R3))

s the space of all solenoidal vector fields in Lq(Ω ;R3). Setting

H2
q,σ(Ω ;R3) := H2

q (Ω ;R3) ∩ Lq,σ(Ω ;R3),

e let Aq : D(Aq) → Lq,σ(Ω ;R3) be the Stokes operator, defined by

Aqu := −µsPH∆u, D(Aq) := {u ∈ H2
q,σ(Ω ;R3) : u = 0 on ∂Ω}.

imilarly, we can define Gq : D(Gq) → Lq(Ω ;M3) by

GqF := −κ∆F, D(Gq) := {F ∈ H2
q (Ω ;M3) : F = 0 on ∂Ω}.

urther, given any m ∈ C(Ω ;R3), the operator Dq(m) : D(Dq(m)) → Lq(Ω ;R3) is defined by

Dq(m)h := −(αI3 − βM(m))∆h,
D(Dq(m)) := {h ∈ H2

q (Ω ;R3) : ∂νh = 0 on ∂Ω}.

ext, we set
[Bq(m)h]i = ∂im · ∆h+ ∇m : ∂i∇h, i = 1, 2, 3. (2.5)

t follows that
Bq(m)m = ∇ · (∇m⊙ ∇m) for each m ∈ H2

q (Ω ;R3). (2.6)

ote that Bq(m) ∈ L(D(Dq(m)), Lq(Ω ;R3)) for any m ∈ C1(Ω ;R3). Finally, we define the spaces

X0 = Lq,σ(Ω ;R3) × Lq(Ω ;M3) × Lq(Ω ;R3)

nd
X1 = D(Aq) ×D(Gq) ×D(Dq(m)).

It is well known that Aq and Gq enjoy the property of maximal Lp-regularity, cf. [15–17] and [14, Section
.3, Chapter 7]. To deal with Dq(m) for m ∈ C(Ω ;R3), we set

Dq(m(x), ξ) := (αI3 − βM(m(x)))|ξ|2, x ∈ Ω , ξ ∈ R3,

or the symbol of the differential operator Dq(m). An easy computation shows that

σ(Dq(m(x), ξ)) = {α, α± iβ|m(x)|}, x ∈ Ω , ξ ∈ S2,

here σ denotes the spectrum. Since m ∈ C(Ω ;R3), Dq(m(x), ξ) is normally elliptic for every x ∈ Ω , see
or instance [14, Definition 6.1.1]. By [14, Theorem 6.3.2], Dq(m) has the property of maximal Lp-regularity.

Then, the operator Aq : X1 → X0 defined by

Aq(m) =

⎡⎣Aq 0 PHBq(m)
0 Gq 0

⎤⎦ (2.7)

0 0 Dq(m)

6
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enjoys the property of maximal Lp-regularity for every m ∈ C1(Ω ;R3) as well, due to its upper triangular
structure.

Indeed, given any f = (f1, f2, f3) ∈ Lp((0, T );X0), we consider the system{
∂tz +Aq(m)z = f(t), t ∈ (0, T ),

z(0) = 0,
(2.8)

here z = (v,G, h). By the maximal Lp-regularity property of Gq and Dq(m), one can find for each
∈ C(Ω ;R3) a (unique) solution

(g, h) ∈ Lp((0, T );H2
q (Ω ;M3 × R3)) ∩H1

p ((0, T );Lq(Ω ;M3 × R3))

for the system ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tG+ GqG = f2 in Ω ,

G = 0 on ∂Ω ,

∂th+ Dq(m)h = f3 in Ω ,

∂νh = 0 on ∂Ω ,

(G(0), h(0)) = (0, 0).

Easy computations show that Bq(m)h ∈ Lp((0, T );Lq(Ω ;R3)) for m ∈ C1(Ω ;R3). From the maximal Lp-
egularity property of Aq, we thus infer that there exists a (unique) vector v ∈ Lp((0, T );H2

q,σ(Ω ;R3)) ∩
H1

p ((0, T );Lq,σ(Ω ;R3)) that solves⎧⎪⎨⎪⎩
∂tv + Aqv = −PHBq(m)h+ f1 in Ω ,

v = 0 on ∂Ω ,

v(0) = 0.

Hence (v,G, h) is the unique solution of (2.8). This shows that

Aq(m) ∈ MRp(X1, X0) for each m ∈ C1(Ω ;R3). (2.9)

In addition, we define for z = (u, F,m)

G(z) :=
(
PH

[
∇ · (FFT) − u · ∇u

]
, (∇u)TF − u · ∇F, α|∇m|2 m− u · ∇m

)
. (2.10)

Given any 1 < p, q < ∞, T > 0 and µ ∈ (1/p, 1], we set

E0,µ(T ) := Lp,µ((0, T );X0) and E1,µ(T ) := Lp,µ((0, T );X1) ∩H1
p,µ((0, T );X0).

It is well known that

E1,µ(T ) ↪→ C([0, T ];Xγ,µ) where Xγ,µ := (X0, X1)µ−1/p,p.

See [18], or [14, Theorem 3.4.8]. Observe that by [19, Theorem 3.4] and [20, Theorem 4.3.3], the triple
(u, F,m) ∈ B

2µ−2/p
qp (Ω ;R15) belongs to Xγ,µ iff

u ∈ B2µ−2/p
qp,σ (Ω ;R3) and u = 0 on ∂Ω ,

F ∈ B2µ−2/p
qp (Ω ;M3) and F = 0 on ∂Ω ,

m ∈ B2µ−2/p
qp (Ω ;R3) and ∂νm = 0 on ∂Ω ,

(2.11)

here B2µ−2/p
qp,σ (Ω ;R3) := B

2µ−2/p
qp (Ω ;R3) ∩ Lq,σ(Ω ;R3). In order for ∂νm to be defined, we assume that
µ− 2/p− 1/q > 1.
7
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One readily verifies that

Aq ∈ Cω(Xγ,µ,L(X1, X0)), G ∈ Cω(Xγ,µ, X0), (2.12)

ith ω being the notation for real analyticity, as long as

Xγ,µ ↪→ C1(Ω ;R15).

The above embedding holds whenever µ ∈
(

1
2 + 1

p + 3
2q , 1

]
.

By the definitions (2.5), (2.7) and (2.10), and the relation (2.6), one sees that system (2.3) can be recast
as the abstract evolutionary system

∂tz +Aq(m)z = G(z), z(0) = z0 = (u0, F0,m0). (2.13)

e have the following result on existence and uniqueness of solutions of (2.13).

roposition 2.3. Suppose µ ∈
(

1
2 + 1

p + 3
2q , 1

]
and let z0 ∈ Xγ,µ. Then there exists T = T (z0) such

hat the evolution equation (2.13) admits a unique solution z ∈ E1,µ(T ). Each solution can be extended to a
aximal existence interval [0, T+(z0)) in the sense that

(i) either T+(z0) = ∞ or
(ii) limt→T+(z0) z(t) does not exist in Xγ,µ.

oreover, z enjoys the additional regularity properties

z ∈ C([0, T+);Xγ,µ) ∩ Cω((0, T+);X1) ∩ Cω((0, T+) × Ω ;R15). (2.14)

Proof. The existence, uniqueness and time regularity follow from (2.9), (2.12) and [14, Theorems 5.1.1 and
5.2.1 and Corollary 5.1.2], see also [21, Theorem 2.1]. The joint space–time regularity (2.14) can be proved
by means of the parameter trick in [22], see also [14, Section 9.4.1]. □

Next, we show that solutions of (2.13) give rise to solutions of (2.3), and vice versa.

Proposition 2.4. Let T > 0 be given. The following statements are equivalent:

a) (2.13) has a solution (u, F,m) ∈ E1,µ(T ).
(b) (2.3) has a solution (u, F,m, π) ∈ E1,µ(T ) × Lp,µ((0, T ); Ḣ1

q (Ω)).

Proof. (a)⇒(b): Suppose z = (u, F,m) ∈ E1,µ(T ) solves (2.13) on [0, T ]. Let

v = µs∆u− u · ∇u− ∇ · (∇m⊙ ∇m) + ∇ · (FFT).

hen v ∈ Lp,µ((0, T );Lq(Ω ;R3)). For t ∈ (0, T ), let ∇ψv(t) ∈ Lq(Ω ;R3) be the unique solution of

(∇ψv(t)|∇ϕ)
Ω

= (v(t)|∇ϕ)Ω , ∀ϕ ∈ Ḣ1
q′(Ω),

where (·|·)Ω is the inner product of L2(Ω ;R3) and q′ is the Hölder dual of q. Then PHv(t) = v(t) − ∇ψv(t)
y the definition of the Helmholtz projection. Let π = ψv. Then π ∈ Lp,µ((0, T ); Ḣ1

q (Ω)), and noting
hat PH∂tu = ∂tu, we conclude that (u, F,m, π) is a solution of (2.3) in the regularity class E1,µ(T ) ×
p,µ((0, T ); Ḣ1

q (Ω)).
(b)⇒(a): Suppose (u, F,m, π) ∈ E1,µ(T ) ×Lp,µ((0, T ); Ḣ1

q (Ω)) solves (2.3). Applying PH to the equation
overning u in (2.3), it is an easy task to check that (u, F,m) ∈ E (T ) solves (2.13). □
1,µ

8
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We are now ready for our main result on existence and uniqueness of solutions for system (2.2), or
equivalently, system (1.1).

Theorem 2.5. Let p, q ∈ (1,∞) and µ ∈
(

1
2 + 1

p + 3
2q , 1

]
. Suppose that

z0 = (u0, F0,m0) ∈ B2µ−2/p
qp,σ (Ω ;R3) ×B2µ−2/p

qp (Ω ;M3) ×B2µ−2/p
qp (Ω ;R3)

satisfies the compatibility conditions (u0, F0, ∂νm0) = 0 on ∂Ω . Then there exists a unique solution

(u, F,m, π) ∈
[
H1

p,µ((0, T );X0) × Lp,µ((0, T );X1)
]

× Lp,µ((0, T ); Ḣ1
q (Ω))

f (2.3) for some T = T (z0) > 0. Each solution can be extended to a maximal existence interval [0, T+(z0)).
oreover, (z, π) = (u, F,m, π) enjoys the additional regularity

z ∈ C([0, T+);Xγ,µ) ∩ Cω((0, T+);X1) and (z, π) ∈ Cω((0, T+) × Ω ;R16). (2.15)

f |m0| ≡ 1, then the solution also satisfies

|m(t)| ≡ 1, t ∈ [0, T+(z0)). (2.16)

roof. The assertions in the first part of the statement follow readily from Propositions 2.3 and 2.4. It
hen only remains to show that the condition |m(t)| ≡ 1 holds for every t ∈ [0, T+(z0)), provided |m0| ≡ 1.

Suppose then that |m0| ≡ 1. Let T ∈ (0, T+(z0)) be fixed and set φ = |m|2 − 1. We note that

m ∈ C1((0, T );H2
q (Ω ;R3))

φ ∈ C([0, T ];B2µ−2/p
qp (Ω)) ∩ C1((0, T );H2

q (Ω)).

ndeed, (2.15) implies that m ∈ C([0, T ];B2µ−2/p
qp (Ω ;R3)) ∩ C1((0, T );H2

q (Ω ;R3)). The condition µ ∈
1
2 + 1

p + 3
2q , 1

]
guarantees that B2µ−2/p

qp (Ω) and H2
q (Ω) are Banach algebras. The asserted regularity of

φ thus holds. Taking the dot product of the equation

∂tm+ u · ∇m = α(∆m+ |∇m|2 m) − βm× ∆m

with m and using the relations ∂t|m|2 = 2∂tm ·m, ∆|m|2 = 2∆m ·m+ 2|∇m|2 results in⎧⎪⎨⎪⎩
∂tφ+ u · ∇φ− α∆φ− 2α|∇m|2φ = 0 in Ω ,

∂νφ = 0 on ∂Ω ,

φ(0) = 0.
(2.17)

Multiplying both sides of (2.17) with φ and integrating over Ω yields
d

dt

∫
Ω

1
2φ

2 dx+ α

∫
Ω

|∇φ|2 dx = 2α
∫
Ω

|∇m|2φ2 dx, t ∈ (0, T ).

s m ∈ C([0, T ];B2µ−2p
qp (Ω ;R3)) ↪→ C([0, T ];C1(Ω ;R3)), we obtain the following integral inequality

d

dt

∫
Ω

φ2(t) dx ≤ 4α∥∇m(t)∥2
∞

∫
Ω

φ2(t) dx, t ∈ (0, T ).

pplying the Gronwall inequality we get

max
0≤t≤T

∫
Ω

φ2(t) dx ≤ exp
(

4α
∫ T

0
∥∇m(t)∥2

∞ dx

)∫
Ω

φ2(0) dx = 0.

his implies φ ≡ 0 in QT = [0, T ]×Ω . In other words, |m| ≡ 1 in QT . As this is true for every T ∈ (0, T+(z0))
e obtain that |m(t)| ≡ 1 for any t ∈ (0, T+(z0)). As (1.1) and (2.2) are equivalent, we have proved the
ssertions of the theorem. □
9
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Remark 2.6. Let p, q, µ be as in Theorem 2.5. The assertions of Theorem 2.5, with exception of the higher
time regularity stated in (2.15), still hold if we pose the nonhomogeneous boundary conditions

(u, F,m) = (uD, FD,mN ) on ∂Ω , (2.18)

here
uD ∈ F 1−1/2q

pq,µ ((0, T );Lq(∂Ω ;R3)) ∩ Lp,µ((0, T );W 2−1/q
q (∂Ω ;R3))

FD ∈ F 1−1/2q
pq,µ ((0, T );Lq(∂Ω ;M3)) ∩ Lp,µ((0, T );W 2−1/q

q (∂Ω ;M3))
mN ∈ F 1/2−1/2q

pq,µ ((0, T );Lq(∂Ω ;R3)) ∩ Lp,µ((0, T );W 1−1/q
q (∂Ω ;R3))

nd the initial data satisfy the compatibility conditions

(uD(0), FD(0),mN (0)) = (u0, F0, ∂νm0) on ∂Ω .

ee [14, Theorem 6.3.2]. Here F s
pq,µ are the Triebel–Lizorkin spaces with temporal weight.

. Stability and asymptotic behavior

The last two sections are devoted to a discussion of the asymptotic behavior of solutions (u, F,m, π) to
1.1). In view of Proposition 2.4, the pressure π can be obtained from z = (u, F,m). For this reason, it
uffices to restrict our attention to a solution z = (u, F,m) of (2.13).

The 3-dimensional subspace
E0 := {0} × {03} × R3 of X1

s clearly contained in the set E1 of equilibria of (2.13), where 03 is the 3 × 3 matrix with zero entries. We
efer to Remark 4.3(a) for more information on E1.

At each z∗ = (0, 03,m∗) ∈ E0, the linearization of (2.13) is given by

∂tz +A∗z = 0, z(0) = z0, (3.1)

here z = (u, F,m) and
A∗z = (−µsPH∆u,−κ∆F, (βM(m∗) − αI3)∆m).

ince Ω is bounded, the spectrum of A∗ consists only of eigenvalues. Suppose that A∗z = λz for some λ ∈ C.
y elliptic regularity theory, we can assume that z ∈ H2

q (Ω ;C15) for q ≥ 2. Taking the inner product of
∗z = λz with z, where z denotes the complex conjugate of z, direct computations lead to

Reλ
(
∥u∥2

2 + ∥F∥2
2 + ∥m∥2

2
)

= µs∥∇u∥2
2 + κ∥∇F∥2

2 + α∥∇m∥2
2,

hich implies that Reλ ≥ 0. Here we have used the anti-symmetry of M(m∗) to conclude that

Re (M(m∗)∆m|m)Ω = 0.

Indeed, as the entries of M(m∗) are constant, we obtain

(M(m∗)∆m|m)Ω = (∆(M(m∗)m)|m)Ω = (M(m∗)m|∆m)Ω ,

here we set z · w = zjwj for z, w ∈ C3. The anti-symmetry of M(m∗) implies

(M(m∗)∆m|m)Ω = −(∆m|M(m∗)m)Ω = −(M(m∗)m|∆m)Ω .

his readily yields Re (M(m∗)∆m|m)Ω = 0. When Reλ = 0, one concludes from the above that

∥∇u∥ = ∥∇F∥ = ∥∇m∥ = 0.
2 2 2

10
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Combined with the boundary conditions, this shows that z = (u, F,m) ∈ E0. Further, we infer that A∗z = 0.
hus σ(A∗) ∩ iR = {0} and N(A∗) = E0.
To show {0} is a semi-simple eigenvalue, we will prove that N(A∗) = N(A2

∗). Assume that w = (v, f, h) ∈
(A2

∗). Then there exists z = (0, 03,m) ∈ N(A∗) such that A∗w = z. Then by the divergence theorem, the
oundary condition ∂νh = 0 and the fact that m as well as m∗ are constant,

∥z∥2
2 = (A∗w|z) = ((βM(m∗) − αI3)∆h|m) = 0.

e conclude that z = 0 and thus w ∈ N(A∗). This shows that {0} is semi-simple. As E0 is a linear space,
e clearly have Tz∗E0 = N(A∗).
If follows from [23, Remark 2.2], see also [14, Remarks 5.3.2], that all equilibria close to z∗ are contained

n a manifold M of dimension 3 = dim(N(A∗)), where we used the fact that the center space Xc coincides
ith N(A∗) as {0} is semi-simple. Since the dimension of E0 is also 3, we conclude that there exists an open
eighborhood V∗ ⊂ X1 of z∗ such that M ∩ V∗ = E0 ∩ V∗. Hence, the neighborhood V∗ contains no other
quilibria than the elements of E0, that is, V∗ ∩ E0 = V∗ ∩ E1.

We have, thus, shown that z∗ is normally stable, see [14, Theorem 5.3.1] for a definition.

heorem 3.1. Let p, q ∈ (1,∞) and µ ∈
(

1
2 + 1

p + 3
2q , 1

]
.

Then each equilibrium z∗ = (0, 03,m∗) with m∗ ∈ S2 is stable in the topology of Xγ,µ. There exists
ε > 0 such that any solution (u, F,m, π) of (1.1) with initial value z0 = (u0, F0,m0) ∈ Xγ,µ satisfying
∥z0 − z∗∥Xγ,µ ≤ ε exists globally and converges to some z∞ = (0, 03,m∞) with m∞ ∈ S2 in the topology of
Xγ,1 at an exponential rate as t → ∞.

Proof. Given an equilibrium z∗ = (0, 03,m∗) ∈ E0, we infer from [14, Theorem 5.3.1] and [24,
Proposition 5.1] that there exists ε > 0 such that any solution z = (u, F,m) of (2.13) with initial data
z0 = (u0, F0,m0) ∈ Xγ,µ satisfying the conditions |m0| ≡ 1 and ∥z0 − z∗∥Xγ,µ ≤ ε exists globally and
converges at an exponential rate to some z∞ = (0, 03,m∞) with m∞ = constant, in the topology of Xγ,1 as
t → ∞. By Proposition 2.4, we can determine a pressure π such that (z, π) solves (2.3) on R+. Furthermore,
since |m0| ≡ 1, we infer that |m(t)| ≡ 1 for all t ≥ 0, which implies that (z, π) solves (1.1) on R+. Finally,
we conclude that m∞ ∈ S2. □

4. Lyapunov functional and global solutions

Let
E := E(u, F,m) := 1

2

∫
Ω

(
|u|2 + |F |2 + |∇m|2

)
dx. (4.1)

We show that the energy E is dissipated.

Proposition 4.1. Let (u, F,m, π) be a solution of (1.1) with initial value z0 satisfying the assertions of
Theorem 2.5. Then

d

dt
E(t) = −

∫
Ω

(
µs|∇u(t, x)|2 + κ|∇F (t, x)|2 + α|∆m(t, x) + |∇m(t, x)|2m(t, x) |2

)
dx

or t ∈ (0, T+(z0)). Moreover, E is a strict Lyapunov functional for (1.1).

roof. Let z0 be an initial value satisfying the assumptions of Theorem 2.5. Then (1.1) admits a unique
olution (u, F,m, π) in the regularity class stated in the Theorem. In particular, z = (u, F,m) enjoys the
egularity property

z ∈ C([0, T );X ) ∩ C1((0, T );X ),
+ γ,µ + 1

11
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with T+ = T+(z0). In the following, we suppress the time variable t ∈ (0, T+). A straightforward
omputation, using the boundary condition ∂νm = 0, yields

d

dt
E =

∫
Ω

(∂tu · u+ ∂tF : F − ∂tm · ∆m) dx.

e have ∫
Ω

∂tu · u dx =
∫
Ω

[
µs∆u− u · ∇u− ∇π − ∇ · (∇m⊙ ∇m) + ∇ · (FFT)

]
· u dx

=
∫
Ω

(
−µs|∇u|2 − (u · ∇m) · ∆m− FFT : ∇u

)
dx,

(4.2)

here we used ∇ · u = 0, the boundary condition u = 0 on ∂Ω , (1.7), and the relations

∇ · (∇m⊙ ∇m) = ∇m∆m+ 1
2∇(|∇m|2), (∇m∆m) · u = (u · ∇m) · ∆m.

Moreover, ∫
Ω

∂tF : F dx =
∫
Ω

[
(∇u)TF − u · ∇F + κ∆F

]
: F dx

=
∫
Ω

(
FFT : ∇u− κ|∇F |2

)
dx,

(4.3)

here we employed the condition ∇ · u = 0, the boundary condition F = 0 on ∂Ω , and the relations

(∇u)TF : F = FFT : ∇u, 2(u · ∇F ) : F = u · ∇|F |2.

bserving that (∂tm+ u · ∇m) ·m = 0, we obtain∫
Ω

(∂tm+ u · ∇m) · ∆mdx =
∫
Ω

(∂tm+ u · ∇m) · (∆m+ |∇m|2 m) dx

=
∫
Ω

(α(∆m+ |∇m|2 m) − β m× ∆m) · (∆m+ |∇m|2 m) dx

= α

∫
Ω

|∆m+ |∇m|2 m|2 dx

(4.4)

as m × ∆m is perpendicular to both m and ∆m. Combining the results in (4.2)–(4.4) readily yields the
assertion.

Hence, E is non-increasing along solutions and, thus, is a Lyapunov functional. If, for any time t ∈ I :=
(t1, t2) ⊂ (0, T+(z0)) with some 0 ≤ t1 < t2, d

dt E(t) = 0, then

∥∇u(t)∥2 = ∥∇F (t)∥2 = ∥∆m(t) + |∇m(t)|2m(t)∥2 = 0.

ombining with the boundary conditions, we infer that

u(t) = 0, F (t) = 03, t ∈ I.

his readily yields (∂tu(t), ∂tF (t)) = (0, 03) for all t ∈ I. Moreover, the condition ∥∆m(t)+|∇m(t)|2m(t)∥2 =
implies that

∆m(t) + |∇m(t)|2m(t) = 0 in Ω , t ∈ I. (4.5)

aking the cross product of both sides of (4.5) by m(t) yields

m(t) × ∆m(t) = −|∇m(t)|2m(t) ×m(t) = 0 in Ω .

herefore, ∂tm(t) = 0 for all t ∈ I. Hence, (∂tu(t), ∂tF (t), ∂tm(t)) = (0, 03, 0) for all t ∈ I, and this means
hat the system is at equilibrium for t ∈ I. To sum up, we have proved that E : Xγ,µ → R is a strict
yapunov functional for (1.1). □
12
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The arguments above additionally yield a characterization of the set of equilibria of (1.1).

Corollary 4.2. The set of equilibria of (1.1) is given by

E = {(0, 03,m∗, π∗)}, (4.6)

here m∗ ∈ H2
q (Ω) solves the constrained nonlinear elliptic problem⎧⎪⎨⎪⎩

∆m∗ + |∇m∗|2m∗ = 0 in Ω ,

|m∗| ≡ 1 in Ω ,

∂νm∗ = 0 on ∂Ω ,

(4.7)

nd π∗ = − 1
2 |∇m∗|2 + C for some constant C.

Proof. We have already shown in the proof of Proposition 4.1 that any equilibrium of (1.1) is given by
(0, 03,m∗), where m∗ solves (4.7). Hence, at equilibrium, we are left with the relation ∇π∗ = −∇ · (∇m∗ ⊗
m∗). We have

[−∇ · (∇m∗ ⊗ ∇m∗)]i = −∂im∗ · ∆m∗ − (∂i∂jm∗) · ∂jm∗

= ∂im∗ ·m∗|∇m∗|2 − 1
2∂i|∇m∗|2 = −1

2∂i|∇m∗|2,

here we used the relations ∆m∗ = −|∇m∗|2m∗ and ∂im∗ ·m∗ = 1
2∂i|m∗|2 = 0. Hence, ∇π∗ = − 1

2 ∇|∇m∗|2
nd the assertion for π∗ follows. □

Remark 4.3. (a) We note that for solutions of system (2.3), that is, in case the condition |m| ≡ 1 is
ropped in (2.2), we can only conclude that

d

dt
E = −

∫
Ω

(
µs|∇u|2 + κ|∇F |2 + α(|∆m|2 + |∇m|2(m · ∆m))

)
dx.

As the term m · ∆m does not have a sign, we can no longer derive the characterization (4.6) for the set of
equilibria, E1, of (2.3), respectively (2.13). However, as shown in Section 3, we can conclude that for every
z∗ ∈ E0 there exists a neighborhood V∗ in X1 such that E1 ∩ V∗ = E0 ∩ V∗.

(b) It is claimed in [25, Lemma 5.2], see also Prüss and Simonett [14, Lemma 12.2.4], that the nonlinear
problem (4.7) admits only constant solutions m∗ ∈ S2. However, this assertion is not correct in the form
stated, as the following example shows: Let Ω = {x ∈ R3 : 0 < r1 < |x| < r2} and m∗ : Ω → S2 be defined
by m∗(x) = x/|x|. Then m∗ is a (non-constant) solution of (4.7).

heorem 4.4. Let p, q, µ, z0 and T+(z0) be as in Theorem 2.5. Suppose that the solution (u, F,m, π) of
1.1) satisfies

z = (u, F,m) ∈ BC([δ, T+(z0));Xγ,µ̄)

for some δ ∈ (0, T+(z0)) and µ̄ ∈ (µ, 1]. Then z exists globally and dist(u(t), E) → 0 in Xγ,1 as t → ∞,
here E is the set of equilibria of (1.1).

roof. Given any initial value z0, we define the ω-limit set of (2.13) as

ω(z0) := {w ∈ Xγ,µ : ∃tn → ∞ s.t. ∥z(tn) − w∥Xγ,1 = 0 as n → ∞}.

14, Theorem 5.7.1] implies that z(·) exists globally and the orbit {z(t)}t≥δ is relatively compact in Xγ,1.
y [14, Theorem 5.7.2], ω(z0) is nonempty, compact and ω(z0) ⊂ E . Further, we can infer that dist(z(t), E) →

in Xγ,1 as t → ∞. □
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