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1 Introduction

1.1 Background

In this paper, motivated by Bucur—Buttazzo—Nitsch in their papers [10, 11], we consider the thermal insu-
lation problem of designing the optimal shape Q of R" which represents a thermally conducting body, and
determining the best distribution of a given amount of insulating material around Q; the thickness of the insu-
lating material is assumed to be very small with respect to the size of Q, so the material density is assumed
to be a nonnegative function defined on the boundary 0Q. A rigorous approach is to consider a limit problem
when the thickness of the insulating layer goes to zero and simultaneously the conductivity in the layer goes
to zero.
Mathematically, this amounts to consider the limit of the family of functionals, as € — 0,

Fe(u,h, Q) = %J.IVuI2 dx+§J‘|Vu|2 dx—J-fudx, (1.1)
Q % Q
over u € H(l)(Qg), where Q. = Q U Z.. Here Q has a prescribed volume V,
Ye={0+tv(o):0€0Q, 0<t<eh(o)}
is the thin layer of thickness €h(g) around 0Q, and h € J#;,, where

S = {h: 0Q — R is measurable, h > 0, J hdo = m}
o)

and h denotes the distribution function of insulation material with fixed total amount m > 0.
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As in [1, 10], in the framework of I'-convergence passing to the limit € — 0 in (1.1), we obtain the limit
energy functional
1 ) 1 u?
Fm(u, h, Q) = EJ-IVuI dx+§ J WdU—J’fudx. (1.2)
Q 00 Q

By [9], for any fixed u and Q, if we minimize F(u, h, Q) over h € J4,, then F(u, h, Q) achieves its minimum

when
ul

h=m—m—. (1.3)
[ogluldo
After substituting (1.3) for h into (1.2), we seek to minimize
I, Q) '—1JIVuIde+i([luld%”‘l)z—qudx (1.4)
MR 2m '

Q 0Q Q

over all u € H'(Q), subject to the volume constraint |Q| = Vy. See [7] for earlier related work.
It was proved in [10] that, for every f € L2(Q), if Q is fixed, then the minimization of (1.4) admits a unique
solution ug € H'(Q), and moreover, if Q = Bg and f = 1, then

R? — |x|? m
2n n2w,R"2’

U, (x) =

where w,, is the volume of unit ball in R" and By, is the ball of radius R centered at origin.

Stationary solutions were also obtained in [10]. More precisely, for a given smooth vector field € C§°(R")
with Ig divn dx = 0, let F¢(x) := F(t, x) be the flow map generated by the vector field n, i.e. F; solves the
following ODE in R™:

d
d_tF(t’ X) = rl(F(t’ X))7
Fo(x) = x.

It was proved in [10] that, for f = 1, By is a stationary shape in the sense that

d
d—t|t=03m(ut, Q) =0,

where u; = u o F;*, Q¢ = Fy(Bg) and | Bg| = V.
Two open questions are asked by Bucur—Buttazzo—Nitsch in [11].

Problem 1.1. Do the optimal shapes minimizing the energy functional (1.4) exist?

Problem 1.2. Is it true that By is a unique optimal shape when f = 1?

1.2 Existence of minimizers over convex domains

There has been a developed scheme for the existence of a minimizer to problem (1.4) over convex domains
contained within a container Bg and H' function associated to such domains, due to the compactness prop-
erties of such domains; see [9, 20] and the survey book [19]. See also the paper [26] by Lin—Poon. Indeed,
the existence of problem (1.4) relies on the following properties for convex domains: If Q ¢ By is convex,
|Q| = Vo > 0and u € H(Q), then the following statements hold.

(1) (Uniform Poincaré inequality) There exists a universal constant C > 0, independent of (u, Q), such that

juz dx < C(JIVuI2 dx+<J|u|d%””’1(x)>2). (1.5)
0 Q

0Q

This guarantees the uniform H'-bound of u; for any minimizing sequence (u;, Q;) of Jp,.
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(2) (Uniform Sobolev extension property) There exists a universal constant C > 0 independent of Q such
that, for each u € H1(Q), there exists ii € H!(R") such that @i = u in Q, and

il gy < Cllullgrq)- (1.6)

(3) (Compactness of convex domains) If Q; is a sequence of convex sets in Bg with [Q;| = Vo, then there is
a convex domain Q such that Q; — Qin L, and

A" Waq, = A" Woog

as convergence of Radon measures. See [3, 4] as well.

(4) (Lower semicontinuity of energy) From (1.5), (1.6) and the compactness of convex domains in Bg, for any
minimizing sequence of pairs (u;, Q;) to (1.4), there are Q and u € H'(Q) such that, up to a subsequence,
Qi —» QinLt,

J-IVuI2 dx < liminf JIVu,-l2 dx,
1—00
Q

Qi
Jlul A" = liminf j il den (1.7)
1—00
20 20,

and

lim J fui dx = J fu dx.
1—00

Qi Q
The proof of (1.7) relies on the parametrization of 9Q by the sphere (see also [26]).

It is challenging to generalize this scheme for convex domains to more rough domains. In this context,

we formulate the problem for a class of specified rough domains as follows.

1.3 Formulation of problem (1.4) over rough domains

We would like to study minimization problem (1.4) over some controllable rough domains, belonging to
the class of Sobolev extension domains, with fixed volume. A natural class of Sobolev extension domains
is the so-called M-uniform domain. In fact, when n = 2, M-uniforms domain are equivalent to extension
domains for H! functions; see [24, 33]. Recall the following definition of M-uniform domain, which was first
introduced in [16, 24].

Definition 1.1. For M > 1, a domain Q ¢ R" is called an M-uniform domain if, for any x1, x; € Q, there is
arectifiable curve y: [0, 1] — Q such that y(0) = x1, y(1) = x2, and

(@) A (y) < Mix1 - xal,

(ii) d(y(t),0Q) > & min{ly(t) - x4, [y(t) - x|} forall ¢ € [0, 1].

Roughly speaking, an M-uniform domain has no interior or exterior cusps, and it does not have very thin
connections. The class of M-uniform domains contains convex domains in a ball, uniform Lipschitz domains
and minimally smooth domain introduced in [32], and it can have a purely unrectifiable boundary, such as
the complement of 4-corner Cantor set. This class has a wide range of sets.
We remark that if Q ¢ By is an M-uniform domain and u € H'(Q), then u has an extension @ which is
a BV function in an open neighborhood of Bg. Thus if Q also has finite perimeter, then the trace of u can be
defined on the reduced boundary 0*Q in the sense that there exists a measurable function u* on 0*Q such
that 1
}i_{%r_n J lu-u*(x)|dy=0, #"lae xeo*Q. (1.8)
B,()nQ

We call u* the (interior) trace of u on 0* Q. The reader can refer to the monograph [2, Theorem 3.77].
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Therefore, in the following, we formulate minimization problem (1.4) over rough sets as the minimization
of
1 2 1 * n-1 2
I, Q) :=§j|Vu| ax+ 5 J ) —qudx (1.9)
Q 0" Q Q
over all u € H(Q), |Q| = Vy. We will prove that there is a minimizer to (1.9) among all sets of M-uniform
domains with uniformly bounded perimeters, and thus we are able to solve problem (1.1) within this class of
rough domains. The M-uniform condition of Q plays an important role in generalizing the scheme for convex
domains as mentioned above.

1.4 Main results

We will first state a theorem asserting the compactness of M-uniform domains in Bg, which does not require
the domains to have finite perimeters.

Theorem 1.2. For M > 0, let {Q;} be a sequence of M-uniform domains in By such that
inf diam(Q;) > 0. (1.10)
1

Then there exists an M-uniform domain Q such that, after passing to a subsequence, Q; — Qin L', asi — oo.

Remark 1.3. Assumption (1.10) automatically holds if |Q| = Vo > 0, i.e. there is ¢ = ¢(Vp, n) > 0 such that
diam(Q) > ¢ > 0.

With the help of Theorem 1.2, we can prove two uniform Poincaré inequalities for M-uniform domains; see
Theorems 4.1 and 4.2 below. Applying Theorems 1.2 and 4.2, we can prove the following result.

Theorem 1.4. Forany M >0, A >0,R>0andf € L} (R"),
1 2 1 * n-1 2
Im(u, Q) := 5 Jqul dx + ﬂ( J |lu*| d# ) - qu dx. (1.11)
Q 30 Q

Then J,, admits a minimizer over
A={u,Q) :ueHYQ), Qisan M-uniform domain in Bg, |Q| = Vo > 0, P(Q) < A},

where P(Q) is the perimeter of Q.

We remark that, on the one hand, the M-uniformity assumption in Theorem 1.4 seems to be a natural suf-
ficient condition for the existence of minimizers of J,,(u, Q), among (u, Q) € A, since it guarantees certain
uniform Sobolev extension properties and a boundary Poincaré inequality that further control the L'-norms
of boundary traces u* on the reduced boundary 0*Q for minimizing sequences. On the other hand, it seems
plausible that there may exist a minimizer for J,,(u, Q) in a more general class of domains; moreover, such
a minimizer Q may enjoy better regularity (e.g. a uniform domain with finite perimeter). We plan to further
exploit this equation in the near future. Here we would like to mention a relevant work by Bucur [8].
It turns out that (1.11) can also be defined over the space of functions of special bounded variations
(or SBV). Let D ¢ R" be a bounded smooth domain, and f € L"(D), f > 0. Consider the following minimization
problem: ,
inf{g(u) - % JIVuIz dx + ﬁ(J(m N |u’|)d%"’1> - Ifu dx} (1.12)

R Tu R

over § = {u € SBV(R", R,) : [{u > 0}| = Vo, |suppu \ D| = 0, #"1(J, n dD) = 0}. Here Vu is the absolutely
continuous part of the distributional derivative Du with respect to the Lebesgue measure, and u* and u~
are one-sided limits of u on the jump set J,, of u. See [2] for the definition of SBV(IR"). See [14, 17] for more
background.
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In this context, we are able to prove another existence result.
Theorem 1.5. J(-) admits a minimizer u € 8.

Remark 1.6. If Q ¢ D is an M-uniform domain of finite perimeter and u € H*(Q) is a minimizer of prob-
lem (1.4), then uyq € 8. On the other hand, for a minimizer v of (1.12), if Q := {x € D : v(x) > 0} is a sub-
domain of D, and v has no jumpin Q, i.e. " 1(J, n Q) = 0, where J, is the jump set of v, then v € H}(Q) and
(vla, Q) is a minimizing pair of problem (1.9).

We will also study problem (1.2). This problem is extremely challenging. It seems to be open, among all
C? domains, if f = 1, whether a ball is an optimal configuration, let alone the uniqueness of an optimal shape.
To see some of the difficulties to validate this conjecture, one may compare the functional g, (u, Q) with the
recently well studied energy functional

Ju, Q) = % JIVuI2 dx+f J u? da—Judx,
Q 30 Q

where f is a positive constant. Due to the linear splitting property of the regular functional J, a Steiner sym-
metrization argument can be implemented to show that if (u, Q), where Q c R" is a smooth domain and
u € HY(Q), minimizes J (v, U) among allv € H'(U) and smooth domains U c R" subject to the volume constraint
|U| = 1, then Q must be a ball of volume 1. This can be done by Steiner symmetrization and analysis of an
ODE with Robin boundary condition. We refer the interested readers to Bucur—Giacomini [13, page 9] for the
detailed explanation. In contrast, it seems that none of the known symmetrization methods is applicable to
the uniqueness of the minimization problem of J,,(u, Q) as described above.

In this paper, we manage to make some partial progress of problem (1.2). Our idea is to study this opti-
mization problem through the method of domain variations. After some delicate calculations, which involves
geometric evolution equations and an eigenvalue estimate of the Stekloff problem, we prove the following
theorem.

Theorem 1.7. For any m >0, R > 0 and any smooth vector field n € C°(R", R"), with n(x) L TxoBg for
X € 0Bg, if the flow map F;, associated with n, preserves the volume of B, then (ug, Br) is a stable, critical
point of (-, -) in the following sense:

d a?

dat t:OHm(uFt(BR), F¢(Bg)) =0, an tzOgm(uFt(BR)’Ft(BR)) > 0.

Here ur,(gy) is the unique minimizer of Jm(-, F¢(Br)) in HY(F¢(BgR)).
A couple of remarks related to Theorem 1.7 are in order.

Remark 1.8. We have learned from the referee that problem (1.2) has recently been solved by Pietra—Nitsch—
Scala-Trombetti [30] through completely different arguments. However, we think that the shape derivative
calculations made in Theorem 1.7 have their own interest and may have applications in different problems. In
fact, in a very recent preprint [21], the second author and his coauthors have extended the second variation
formula for general radial heat source functions f(x) = f(|x|) along arbitrary directions and proved several
interesting results on the stability and instability of J,,(u, Q) given by (1.11).

1.5 Some further remarks

The compactness of M-uniform domains with uniformly bounded perimeter was previously proved by Li—
Wang [25], where the authors consider the minimization problem arising from the liquid crystal droplet
problem:
J(u, Q) := JIVu|2 dx + P(Q), (1.13)
Q
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where u € H'(Q, $?) and |Q| = Vj > 0. If (u;, Q;) is a minimizing sequence to (1.13), then Q; automatically
have uniformly bounded perimeters and thus have an L* limit up to a subsequence. It was proven in [25] that
the limit is £™-equivalent to an M-uniform domain.

Motivated by a volume estimate result in [23] for general porous domains, we will show that M-uniform
domains turn out to have uniformly bounded nonlocal perimeters and thus have an L' limit up to a sub-
sequence by the fractional Sobolev compact embedding theorem; see Corollary 3.3. This together with the
argument in [25] yields Theorem 1.2. Hence one may also consider problem (1.9) over M-uniform domains
of finite perimeters, without additionally requiring that the perimeters are uniformly bounded as assumed
in Theorem 1.4. The difficulty, however, is that, even if there is a limit and the limit of the domains in the
minimizing sequence is still an M-uniform domain, it might not have finite perimeter, and thus the bound-
ary integral term in (1.9) may not be well-defined. It would be very interesting to prove that the minimizing
sequence of (1.9) does have uniformly bounded perimeters, instead of adding this as an assumption.

A byproduct of the compactness of M-uniform domains is a uniform Poincaré inequality for such
domains; see Theorem 4.1. In [5], such a uniform Poincaré inequality was only proved for uniformly Lipschitz
domains. Hence Theorem 4.1 generalizes this result of [5].

1.6 Notation

Throughout this paper, we adopt the standard notation. For aset A ¢ R", welet A" := {x ¢ R" : d(x, A) < 1}
and A, = {x € R" : B,(x) c A}. Denote by s#"! the (n - 1)-dimensional Hausdorff measure, and dy(-,-)
denotes the Hausdorff distance between two sets. Denote by £" the Lebesgue measure in R". Let |A| denote
the Lebesgue measure of A. We also let B,(x) = {y € R" : |y — x| < r}. Welet 0* A denote the reduced boundary
of A. We use diam(A) to denote the diameter of A. Also, we always let w, be the volume of the unit ball in R".

We let Mg be the class of all M-uniform domains contained in Bg, and we let Mg . be the subclass of
Mp such that any domain in the subclass has diameter bigger than or equal to ¢ > 0. We always use u* to
denote the trace of u in the sense of (1.8). Last, when we say a set is a domain, we mean the set is a connected
open set.

2 Preliminaries on rough domains

We start with some definitions.
Definition 2.1. For ¢ > 0, D, is the class of sets E satisfying
|B;(x) N E| > cr™
for any x € 0F and O < r < diam(E).
The next remark says that any set in D, is £L"-equivalent to its closure.
Remark 2.2. IfE € D, then E = E (mod £").
Proof. By the Lebesgue density theorem, if E € D, then oE ¢ E (mod £™). Hence |[E\ E| = 0. O

Remark 2.3. IfE € D, then, forany x € E and 0 < r < 2 diam(E), thereis ¢’ = ¢/(c, n) > 0 such that
|B,(x) N E| > c'r".

Proof. There are two cases.

(@) Ifr=2d(x, o), then thereis z € OF and B:(z) ¢ B,(x); hence |B,(x) N E| > |B:(z) N E| 2 c(%)" =2""cr,
(b) If r < 2d(x, OF), then B (x) ¢ E. Thus |B,(x) N E| = wa(})".

Hence there is ¢’ = ¢’(c, n) > 0 such that |B,(x) N E| > c'e™. O
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The next proposition says M-uniform domains belong to the class D..

Proposition 2.4. If Q is an M-uniform domain, with diam(Q) > co > 0, then Q € D, for some ¢ > 0 depending

only on M, n and w.
0

Proof. Forany x € 0Q and O < r < diam(Q), we claim that there is a constant ¢; = ¢c1(M) > 0 such that there
is a ball of radius c1r contained in B;(x) N Q. Indeed, since 0 < r < diam(Q), thereisy € Q \ Bz(x). Lety ¢ Q
be the curve connecting x and y as in the definition of M-uniform domain. Choose z € 0B1,(x) ny.Thenz € Q
and d(z, 0Q) > & 7. Hence if we choose c1(M) = i, then B, anr(2) € B(x) n Q. In particular, for any x € 0Q

and any O < r < diam Q, |B,(x) N Q| > |B¢,nr(2)| = c1(M)r". O
The following remark will be used in the proof of compactness of M-uniform domains.

Remark 2.5. If Q is an M-uniform domain with |Q| > ¢, then there is ry > 0 depending only on M, n, ¢y such
that Q contains a ball of radius ro.

Proof. By theisodiametricinequality, thereis c; = ¢1(n) > O such thatdiam(Q) > c;.From the proof of Propo-
sition 2.4, Q contains a ball of radius %Mcl. O

Similarly, we define D¢ as follows.

Definition 2.6. For ¢ > 0, let D¢ be the class of sets E such that |B,(x) N E¢| > cr™ holds for any x € oF and
0 < r < diam(E).

The following proposition is from [27, Proposition 12.19]. It says that, for any set E ¢ R", we can find an
LM-equivalent set E with a slightly better topological boundary such that 0F = spt ug, where ug is the distri-
butional perimeter measure of E.

Proposition 2.7. For any Borel set E c R", there exists an L"-equivalent set E such that |EAE| = 0 and for any
x e dEandanyr > 0,0 < |E N B,(X)| < w,r™. In other words, spt ug = sptug = OE.

The next lemma concerns the L!-convergence of sets in D..

Lemma 2.8. Suppose D; c B, is a sequence of sets in D. such that D; — D in L. If we identify D with its
LM-equivalent set D as in Proposition 2.7, then D € D.. Moreover, for any € > 0, there is a positive integer
N = N(¢) such that, for i > N, the following properties hold.

(i) D cD;.

(i) (Di)e c D.

(iii) D; c D®.

In particular, D; converges to D in the Hausdorff distance, i.e. dg(Di, D) — 0 asi — oo.

Proof. We argue by contradiction. If (i) were false, then there would exist x € D such that B.(x) n D; = ¢ for i
sufficiently large. Hence, by the hypothesis and Proposition 2.7, we obtain O = |B¢(x) N D;| — |B<(x) N D| > O,
a contradiction.

If (ii) were false, there would be a sequence x; € (D;) \ D. We may assume x; — Xo. Thus xg € 0D U D€.
By Proposition 2.7, we have w, €™ > |B<(xp) N D|. On the other hand, since B.(x;) ¢ D;, it follows

|B¢(x0) N D| = lim |B¢(x;) N D| > liminf(|B¢(x;) N Di| — |D;AD|) = wye™ — lim sup|D;AD| = wpe",
i—0co i—00 i—oo
which is impossible.
If (iii) were false, then there would exist a subsequence of x; € D; \ D¢. Without loss of generality,
assume x; — Xo € R"\ D¢, For any i, by Remark 2.3, there is ¢’ > 0 depending only on ¢ and n such that
c'e" < |B¢(x;) N D;|. On the other hand, since |B¢(xo) N D| = 0, it follows

liminf|B¢(x;) N D;| < lim sup(|B¢(x;) N D| + |DAD;|) < |Be(x0) N D| + lim sup|D;AD| = 0,
1—00

i—00 i—oo

which is a contradiction.
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It remains to show D € D.. Since D; — D in LY, for any x € oD, there is x; € D; such that x; — x. Hence,
for any r > 0, by Remark 2.3, we have

|By(x) N D| = lim|B,(x;) n D| > liminf|B,(x;) N D;| - lim sup|D;AD| > c'r".
i i i

Hence D € De. O
The following remarks follow immediately from (i) and (iii) in the above lemma.

Remark 2.9. If D; and D satisfy the same assumption as in Lemma 2.8 and if int(D) # @, then int(D) is
a domain. If in addition |int(D)| = |D|, then int(D) € D, and D; — int(D) in L.

For sets in D¢, we have the following result, which is similar to Lemma 2.8.

Lemma 2.10. IfD; € D and D; — D in L', and we identify D with its L"-equivalent set D as in Proposition 2.7,
then D € D¢. Moreover, for any € > 0, there is a positive integer N = N(g) such that, for i > N, the following
properties hold.

(@) DcD:.

(i) (Di)e ¢ D.

(iii") D¢ c D;.

3 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. We start with the following two lemmas.

Lemma 3.1. Let Q be an M-uniform domain in Bg ¢ R" with diam(Q) > cg > 0. Then there exist constants
6=6(M,n) € (0,1] and C = C(co, M, R, n) > O such that

1(0Q)"| < Cr® forallr € (0, 1]. (3.1)

Lemma 3.2. IfQ; is a sequence of M-uniform domains in By such that diam(Q;) > ¢ > 0and Q; — Din L%, then
there is an M-uniform domain Q such that Q; — Qin L.

Lemma 3.1 is essentially proved in [23], where a more general result for porous domains is established. Here
we present a simpler proof in the following for the reader’s convenience. The ideas are from [23].

Proof of Lemma 3.1. Choose ko > 1 such that

- min{cg, 1} -

2 ko1 2o, (3.2)

If @1} < ¢ < 1, then

2|BR+1| < 2|BR+1| S5

r
[(0Q)] < Bry1l < min{co, 1}~ min{co, 1}

forall 6 € (0, 1].

If0 < r < ™.l then we can find some k > ko such that 2% < r < 27k,
It suffices to prove (3.1) for r = 2%, since it would then imply

8

10Q)" < C27%6 = ce )& < crevr < Crs.

Forany x € (aQ)ka, there exists x; € 0Q such that |x — x1| < 27. Then, for any ko < j < k, by the choice of kg
in (3.2), diam(Q) > 27+ so that there exists x, € 0B+ (x1) N Q. Let yC Q be the path connecting x; and x;
as in Definition 1.1. Let y € 0B,-i(x1) Ny, and thus

(3.3)

1, 27
d(y, 0Q) > Mmm{ly—xn, ly —x2l} = e
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We cover Bg \ 0Q by {B,,(z) : z € BR \ 9Q, r; = dez, "Q)} = B;. By Vitalli’s covering lemma, we can choose
a countable pairwise disjoint subfamily B of B; such that B \ 0Q c | Jz.5 5B. Hence y € Bs,,(z) for some
B,.(2) € B.

Clearly,

1 )
d(z,0Q) < |z-x1|<lz-y|+|y—-x1| <51, +27 = §d(z, 0Q) +27,

which implies

w

d(z,0Q) < Ez—f, 5r, <2771,

Therefore,
z € By-n1(x1) \ Bzfifl(X1)~ (3.4)

Notice that, by (3.3), it follows from y € Bs,_(2) that < 20r,, and hence
Ix—z|<|Ix=x1|+Ix1=yl+|ly—-zl < 27Ky 27 4 5r, < 27%1 4 5r, < (40M + 5)r, < 45Mr,.

Therefore, x € Byspy,(2).
So far, we have shown that, for any x € (aQ)ka and ko <j <k, there is zj € By+1(x1) \ By--1(x1) such
that x € Bys Mr,, (zj) and Brz]- (zj) € B. Therefore, forall x € (aQ)ka, we have

Y xusmp(x) = k;ko, (3.5)

BeB

since by (3.4) each B € B can be considered at most three times in order that x € 45MB.
By the Hardy-Littlewood theorem, there is constant ¢, > 1 such that, forany p > 1,

Mepllr < cn Ipllze,
()

where M¢ is the non-centered Hardy-Littlewood maximal function.
Let§ = m. BY (3.5), we have

160)>"| = 270 J kb _ 5k J 2 (ko3 e Xasmp ()8 g < —Kk6 koS J OZO: (36 ZBEBXZGMB(X))
()7t 0@ =0

. _m_
For any nonnegative ¢ € L=-1, m > 1, we have

J () Y Xasmp(x) dx < (45M)" z |B| J P(x) dx < (45M)" Y JM(],’)(X) dx

BeB |45MB| 45MB BeB p
m
< smy g . ([( 3 xs00)" ax)™" = asmyeymiBoar i,
BeB
Hence, by duality, for m > 1, we obtain
" Y. XusMs m S (45M)"cym|Bag| . (3.6)

BeB

It is straightforward to verify (3.6) for m = 1. Therefore,

_ 3(45M)"8c,l)!
|(aQ)2 k|<2 k&zkong |Z( ( l? n)
I
< 2‘k52k°5|B2 Rl Z(g) by Stirling’s formula and the choice of §
=0

= C(ko, R, 6, n)2‘k5 < C(co, M, R, n)2‘k5 since ko depends on cp.

This completes the proof. O
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Lemma 3.1 yields the following corollary.

Corollary 3.3. Let Q be an M-uniform domain in Bg ¢ R" with diam(Q) > co > 0. Then there exists a constant
6 = 6(M, n) € (0, 1] such that, for any s € (0, 6),

Xalwsig < C=C(M,n,R,s, co). (3.7)

Proof. Let 6 be as in Lemma 3.1. Then (3.7) follows from the estimate

JJD{Q(X)—XQ()’N dy dx = J ZJR J wd%"‘l(y)drdx

|X — y|n+s rnts
BR BR BR 0 aB,(x)
2R
[ [ etxaO gy g
ynts
0 (0Q)" 0B, (x)
2R

IN

1 _
| s am gy dxar
0 (30)7 3B, ()

2R

I Crirsldr< C(M,n,R,s,co) < 00,

0

IN

where in the second equality we have used that if x ¢ (0Q)" and y € B,(x), then yq(x) = xao(¥)- O
Next, we prove Lemma 3.2.

Proof of Lemma 3.2. Without loss of generality, we may assume spt yup = 0D as in Proposition 2.7. We first
prove thatint(D) # 0. Indeed, notice that, by Remark 2.5, each Q; contains a fixed ball of radius ry depending
only on co, n and M. Therefore, for each Q;, if € < ’7", then, by definition, (Q;). contains a ball of radius ’70
By Lemma 2.8 (ii), D also contains a ball of radius %0 In particular, int(D) # 0.

Now let Q = int(D). It suffices to show Q is an M-uniform domain, since the L! convergence in the state-
ment can then be directly deduced from Remark 2.2, Proposition 2.4 and the fact Q c D c Q.

Fix any x, y € Q. Then, for any given N > 2M, we may choose O < € < % so small that

ke <d(x,0Q) < (k+1)e forsome k > (1 + %)(N+ 1),

and |x — y| > 2(N + 1)e. Since int(Q) # 0, it follows from Lemma 2.8 (i) and (iii) that dy (Q;, Q) — 0. Hence we
can find x;, y; € Q;, with |x; — x| < &, |y; — y| < € for i large. By Lemma 2.8 (ii), we may choose i so large that

(Qj)e c Q. (3.8)

Also, we choose y; ¢ Q; to be the rectifiable curve connecting x; and y; in Q; as in the definition of M-uniform
domain. For any p € y;, if p € Byg(x;) U Bye(Vi), then clearly p € B(n+1)e(x) U Bin+1)e(y) € Q. Moreover, this
implies
1 1
d(p,0Q) > ke — (N + 1)e > M(]\H 1)e > i min{|p - x|, |p - y}. (3.9)

Clearly, (3.9) also holds for any p on the line segment between x; and x, and between y; and y. If

D ¢ Bne(Xi) U Bne(Vi),
then 1 N
. f
d(p, 0Q;) = u min{|p - xil, [p - yil} > W
and thus p € (Qi)% C (Qi)e € QN Q;. Moreover, let r = d(p, 0((Q;),)). Then, by (3.8), we have B,(p) c Q, so
d(p,0Q) >r=d(p, 0((Qj))) = d(p, 0Q;) — €. Therefore,

d(p, 0Q) . 4w, 00)-e 1 e 1 1
min{lp - x|, [p - yil} ~ min{lp-xil,lp-yil} "M Ne M N’
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Hence, by the choice of € and N, it follows
1 1

1
oy Jmin{p - xl, lp -y - o (3.10)

1 1 )
d(p, 00) > (2 - = Jminlp - x|, Ip - yl} - &) > ( e
Therefore, we may let yV be the curve that consists of the following three parts. The first part is a line
segment starting from x to x;, the second part is the curve y; found above, which starts from x; to y;, and the
third part is a line segment starting from y; to y.
It is clear from the discussion above that yN ¢ Q and y" starts from x to y. Moreover, from (3.9) and (3.10)

and the choice of &, we obtain that

A YN) < MIx;i - yil + Ixi — x| + lyi — V|

M+1
SMx-yl+ M+ Dixi—x|+ M+ D]y;i -yl <M|x-y|+2 -

N >

and
1 1y . 1 N
d(p, 0Q) > <_M - —N)mm{|p -xl,Ip-yl} - UN forallp e y".

Then, by the compactness of (5, dy) and since yN is connected, there is a compact connected set E ¢ Qsuch
that dg(y", E) — 0 as N — oo. Then, by [15, Theorem 3.18],
Y (E) <liminf 52 (yN) < MIx - y|.
N—oo

Hence, by [15, Lemma 3.12], E is arc-wise connected so that we can choose a rectifiable curve y ¢ E joining
x and y. For any p € y, we can choose sequence py € y~, py — p. Since

1 1 . 1
d(pn, 00) > (37 - - ) minilpx - x|, lpy - yl} - 7,

it follows by passing to the limit N — co that

1.
d(p, 0Q) > i min{|p - x|, [p - yl},

which also implies y c int(Q). Therefore, y satisfies both properties in the definition of M-uniform domain,
and Q is M-uniform. By Corollary 2.9 and Proposition 2.4, Q is a domain. This finishes the proof. O

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Corollary 3.3, the sequence yg, is uniformly bounded in W*:1(Bg). By the compact
embedding from W$1(Bg) to space L9(Bg) with 1 < g <1* := -, we conclude that there exists a subse-
quence of Q; that converges to aset D ¢ Bg in L. By Lemma 3.2, D is L! equivalent to an M-uniform domain.
This finishes the proof. O

4 Uniform Poincaré inequality and existence of minimizer to (1.9)

In this section, we will apply Theorem 1.2 to deduce two uniform Poincaré inequalities via compactness
argument, and then we will prove Theorem 1.4.

Theorem 4.1. For any domain Q € Mg, there exists a constant C > 0 depending on M, R such that

Juz dx < CJ|Vu|2 dx forallu € H'(Q) with Ju dx = 0. (4.1)
Q Q Q

Proof. We divide the proof of (4.1) for Q € Mg into two cases.

(i) If diam(Q) > 1, then we argue by contradiction. Suppose there exist pairs (Q;, u;) such that Q; € Mg,
diam(Q;) > 1, u; € HY(Q;) satisfies -I.Qi u;jdx = 0 and -[Qi u? dx = 1, but jQi|Vu,-|2 dx — 0asi — oo. Let il; be
an extension of u; such that

Tillg(ey < C(M, M|uillg(a;)-
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Hence {1;} is a bounded sequence in H'(Bg). Hence we may assume that there exists u € H'(Bg) such that
i — uin H'(Bg) and 1i; — u in L2(Bg). By Theorem 1.2, there is an M-uniform domain Q € My such that
Qi —» QinLt.

Since xq,Vii; — o Vi weakly in L2, by the lower semicontinuity property of weak convergence, we have

JIVuIz dx < lim infj|w,~|2 dx = 0.
1—
Q « Qi
Hence u = ¢ in Q. On the other hand,
Huizdx—juzdxl < Uuizdx—juzdxl+Uu2dx—ju2dx’
Qi Q Q; Qi Qi Q
< i + ull g2 i — ullr2gsy) + J u?dx -0 asi— oo.
QAQ
Hence
Juz dx = 1. (4.2)
Q

Similarly, we have [, u dx = lim; o, [, u; dx = 0.Hencec = Oand [, u? dx = 0. This contradicts (4.2). There-
fore, we have proved (4.1).
(ii) If diam(Q) < 1, then we may assume that O € Q. Hence we can choose a 0 < t < 1 such that

1
Q= ?Q € Mg with diam(Q;) = 1.
For any u € H'(Q) with jQ u dx = 0, from (i), we then have

J 12 (x) dx = 1 J u2(£x) dx < CE" jw(u(tx)nz dx = C2 JIVu(tx)Iz dx = C JIVuIZ dx
Q Q Q Q; Q

<C J‘IVu(x)l2 dx
Q

since O < t < 1. This finishes the proof. O

The second uniform Poincaré inequality has a slightly different form, which will be useful to prove the
existence of minimization problem (1.9). See [18, 28, 31] for more background on traces and the Poincaré
inequality on rough domains.

Theorem 4.2. For any Q € Mg, with P(Q) < A, there exists a constant C > 0 depending on M, ¢, A and R such
that 5
J u?dx < C(IIVuI2 dx + ( J [u* (x)] d%"*) ) forallu € HY(Q). (4.3)
Q Q °Q
Proof. Suppose (4.3) were false. Then, by scaling, we may assume that there would exist pairs (Q;, u;) such
that Q; € Mg.¢, P(Q;) < A, diam(Q;) > ¢, u; € HY(Q;) such that IO,- u? =1, but

2
JIVuiIZ dx + ( J lu*| d%"’l) -0 asi— oo.
Q; 0*Q
We may assume for convenience that u; > 0. Let ii; be an extension of u; such that
il g ey < C(M, m)|luillgrq;)-

Hence {1;} is a bounded sequence in H'(BR). Let u € H'(Bg) be the weak limit of ii; in H'(Bg) and @I; — u
in L?(BR). By Theorem 1.2 and lower semicontinuity of sets of finite perimeter, there is an M-uniform domain
Q € Mg, with P(Q) < A such that Q; — Qin L.
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As in the proof of Theorem 4.1, we have that
JIVuI2 dx < lim ian‘IVul-l2 dx =0,
1—00
Q Qi

and thus u = c in Q for some constant c. Also,

j u?dx = 1. (4.4)
Q

Now let #; = tijxq, and U = uyq. By [2, Theorem 3.84] and the structure of the BV function, we know that
i, u € SBV(R"), with
Ja, =0"Q;n{uf >0} and J,=0"Qn{u* >0}

Here J,, denotes the measure theoretical jump part of a BV function u.

We let w~ and w* denote the measure theoretical interior and exterior trace of a BV function w on 0*Q
respectively. Since 7" 1(0*Q;) < A and Vitjyq, — Viixq weakly in L?(Bg), we can apply [6, Theorem 2.3 and
Theorem 2.12] to obtain

J u* At = Jlu_ _ut|dont < liminfj’lai‘ — @} dA"t = limin J ;.
1—00 1—00

0*Q ]u ]ﬁi a*Qi
Hence Ia*o u* ds" ' = 0and u = 0in Q. This contradicts (4.4). O
Now we are ready to give a proof of Theorem 1.4.
Proof of Theorem 1.4. Let (u;, Q;) be a minimizing sequence, and we may assume that u; is a minimizer of
Im(-, Q;) among all H(Q;) functions. From Jp(u;, Qi) < Im(0, Q;) = 0, we deduce that
1 2
JIVuiI2 dx + ﬂ( J u; dﬁf”‘l) < qui dx<e J u? dx + C; sz dx
Qi 00 Qi Qi Q

< C.e(JIVu,-I2 dx + < J [uf| d%”‘1>2) +Cy Ifz dx,

) "0 Q
where we have used Theorem 4.2. By choosing a small € > 0, this implies that
sqp( J IVui)? dx + J u; d%"’l) < 0o. (4.5)
' Qi bQi

Hence the infimum of J,, > —co. Moreover, by Theorem 4.2 and (4.5), sup;l|u;llg(q,) < co. Now we can repeat
the same argument as in the proof of Theorem 4.2 to conclude that there exists a (u, Q) € A such that

Im(u, Q) < liminf Jp, (u;, Q).
1—00

The proof is completed. O

5 Existence of minimizers in SBV

In this section, we will extend the existence results of the previous section to the setting of SBV and prove
Theorem 1.5. The argument of our proof is similar to that in [12].

Proof of Theorem 1.5. We prove it by the direct method of calculus of variation.

Claim 1. J is bounded from below on 8.
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For any u € 8, since suppu ¢ D and s#"1(J, n oD) = 0, we have the following Sobolev type inequality

[29, Theorem 4.10]:

flull < ClDul(D).

L#1(D)
From (5.1), Young’s inequality and the fact that t> > t — 1, we can derive

) > % JIVuIZ dx + — am <J(|u+| +u|) don 1)2
D

]ll

+%j(|w| 1) dx + %(I(w |+ ] doemt - )—jfudx
D Ju D

2

%JIVulzdx+4 (I(|u+|+|u ) dem 1)

Ju
C(JIVuIdx+J(|u —u)dsm 1) C- Ifudx
D Ju
1 2 1 + n-1 2
ijm dx+—<j(|u |+ u|) do# ) + C|Dul(D) - jfudx
D Tu D

1J|Vu|2dx+i<j(|u |+ [ ]) doen- 1>2+C|Du|(D) Coelull, o -

4 4m Lw-1(D)
Ju

D
—C = Cllfllizn(py,

\%

(5.1)

(5.2)

provided ¢ is chosen sufficiently small. Hence the functional J is bounded from below, and we can find

a minimizing sequence {u;} in 8 such that
lim J(u;) = inf J(u) > —oo.
i—oo ues
Claim 2. There exists u € SBV(D) such that, after taking a subsequence, u; — u in BV.

From the penultimate inequality of (5.2), we have

suplluillev(py = sup(IDu;|(D) + luillz1(py) < Csup(@(ui) + € + Cliflznp)) < o0,
1 1 1

sup(JIVuilz dx + J(Iulf'l ) d%"‘l) < Csup(us) + C + Cliflznpy) < oo
i i
D

Jus

(5.3)

By the compactness theorem of BV functions [2, Theorem 3.23], there exists a subsequence {u;,} and

u € BV(D) such that u;, — uinBV(D), i.e.
w, »u inL'(D),
{Duik ZDu inM(D).
For every € > 0, let u‘l?k := max{u;,, €}, u® := max{u, €}. Then we have
ufk~u8 in BV(D).

From (5.3), we have

|2<oo.

sup jIVu?kI2 = sup I'VuikX{uik>£}|2 < sup quik
D D D

Moreover, from the Chebyshev inequality, we have

sup " (J e ) gs,up1 J(Iu |+ luj ) doa™ " < 9
k tk k € e’

Uiy

where we use that fact that ]ufk < Juy N {uy > e}

(5.4)

(5.5)

(5.6)

(5.7)
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Now, from (5.5), (5.6) and (5.7), we can apply the SBV compactness theorem [2, Theorem 4.7] to conclude
that u¢ € SBV(D), and
vué —vu®  inL'(D),
k
Dluf = Dluf inM(D),
where D/ denotes the jump part of the distributional gradient Du. Moreover,
quﬂz < lim infleuf 2 < lim ianquiklz. (5.8)
k—o00 k k—o00
D D D
Since Vu? = Vuyus¢; — Vua.e.in D as € — 0, by Fatou’s lemma, we have that
JIVuIz < lim inf JquSIZ < sup IIVuiklz < 0o,
E—
D D D
and this implies Vu € L?(D). From the dominated convergence theorem we have that

Vuf > Vu inL*(D), ase— O. (5.9)
For the jump part of u, since u € BV(R"), we get
J|u+ —uT|d#" ! < 0. (5.10)
Ju

Notice that
DIuf = (uf)* — () v "L, (5.11)

By (5.10), (5.11) and the dominated convergence theorem, we have
Diuf - Dlu inM(D), ase— 0. (5.12)

Since both convergence of (5.9) and (5.12) are strong, the Cantor part Du of Du vanishes. In fact, for any
open set A,

IDul(4) < liminf|Duc|(4) = 1imicr)1f(J|Vuf| dx + IDjuSI(A)) - JIVuI dx + |Dlul(A),
E— E—
A A
which implies [D€u|(4) = 0. Hence D°u = 0 and u € SBV(R"). From (5.4), we can derive that [supp u \ D| = 0,
and |[{u > 0}| = V,.
Claim 3. The lower semicontinuity property holds for functional J.

From (5.8) and (5.9), we can conclude that

JIVuIZ < lim j|wik|2. (5.13)
k—o0
D D

For any open set A ¢ R", in view of the bound estimate (5.6), we can apply the lower semicontinuity result
from [6, Theorem 2.12] to {ufk} to obtain

| qeey iy et <tming [ g1l den (5.14)
JueNA o Je NA
ik

Passing the € to 0 and applying the monotone convergence theorem to the left-hand side of (5.14) gives
J (ut+u ) dam? < lim inf J (luf |+ lug ) dA™ .
Juna T g

Choose A = R"\ D. We then get s#"1(J, \ D) = 0 and hence u € 8. From (5.4), (5.13) and (5.14), we can
conclude that
J(w) < liminf J(u;, ) = inf J(u),
k ues

which entails u is a minimizer of the problem. O
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6 Some properties on smooth critical points

In this section, we will show that smooth solutions are stationary critical points.
For a bounded C2-domain Q ¢ R”, since Jn(-, Q): HX(Q) — R is convex, it is readily seen in [10] that
there exists a unique critical point, denoted as ugq, of

1 1 2

Imv, Q) := EI|VV|2 dx+m(J|v| do) —Jvdx (6.1)
Q o0 0

over v € HY(Q). In fact, uq is a minimal point of J,,(-, Q) over v € H(Q). Since I (Jugl, Q) < Im(uq, Q), we

conclude that uq > 0. Moreover, we have the following proposition on the regularity of Q.

Proposition 6.1. IfQ c R" is a C? bounded domain and u € H*(Q) is a minimizer of I (-, Q) over H(Q), then
uecWhP(Q)forany 1 < p < co and

max{[ullwrqy, I(Vu)*lra)} < Cm, p, 1Qllc2). (6.2)
Proof. For any ¢ > 0, consider J4,(-, Q) an e-regularization of J,,( -, Q), which is defined by
1 1 2
35 (v, Q) = 5 J|Vv|2 dx + m( j Vv2 + g2 da) - Jvdx.
Q EYo) Q

Let v, € H(Q) be a minimizer of d5.(+, Q), whose existence is standard. Then v, > 0 in Q, and direct calcu-
lations imply that v, is a weak solution to the following Neumann boundary value problem:

—Avg =1 inQ,
1
%=g£;=(—J v§+52d0>L on 3.
ov m 2 2
30 Vit €

Itis easy to see that J&,(ve, Q) < 34,(1, Q) < C(m, |0Q|, |Q|) forall 0 < € < 1. This, combined with the Poincaré
inequality, implies that

2
JIvalz " ( I |vg|) < C(m,1Q1,1Q) forallo<e<1,
Q Yo
and hence |velgi(q) < C(m, [0Ql, Q) for all 0 < & < 1. Since |g¢| < & Lm V1 +v2 on 0Q, this implies that
8e € L®(0Q), and ||gellr~a0) < C(m, |0Q], |Q]) for all O < € < 1. Therefore, we can apply the standard ellip-
tic theory to conclude that v, € WP (Q) forany 1 < p < oo, and |[vellwirq) < C(m, p, [Qll¢c2) forall 0 < € < 1.
In fact, we have the stronger estimate, namely the LP-norm of the non-tangential maximal function of Vv,
can be bounded by that of g¢, i.e. [(Vve)*llraq) < C(m, p, I1Q]lc2)lgellrr(0q) for all 1 < p < co. Hence we may
assume, after taking a possible subsequence, that there exists v e WH?(Q), p € (1, 00), such that v, — v
in WhP(Q) for all 1 < p < co. Now we want to show that v is also a minimizer of J,,(-, Q). In fact, for any
function w € H*(Q), we have that g¢,(ve, Q) < 35,(w, Q). Since v, — v in HY(Q), it follows from the lower
semicontinuity that
Im(v, Q) < lirgrlglf Tn(Ve, Q) < lirgn_jglf Tn(W, Q) = Im(w, Q).

Since I (-, Q) is convex over H1(Q), there is a unique minimizer of J,,( -, Q) in H*(Q). Hence u = vin Q. This
proves (6.2). O

It follows from Proposition 6.1 and the Sobolev embedding theorem that u € C%(Q) forany O < a < 1. Hence,
by direct calculations, we obtain that u = ug > 0 is a weak solution to the following boundary value problem:

[ —Au=1 in Q,
g—uz—ljudo on 0Q N {x : u(x) > 0},
v maQ (6.3)
ou

—2—%Juda on oQ N {x : u(x) =0}
o0




DE GRUYTER H. Du, Q. Li and C. Wang, Heat insulation problem = 17

It is readily seen that u # 0 on 0Q. The following lemma indicates that any nonnegative weak solution of (6.3)

also minimizes Jn, (-, Q).

Lemma 6.2. For any bounded C2-domain Q ¢ R", ifu € HY(Q) n C1(Q) is a nonnegative weak solution of (6.3),

then Jm(u, Q) < Im(v, Q) forall v e HY(Q).

Proof. For any v € H'(Q), multiplying (6.3) by u — v and integrating over Q, we obtain

ov ov

JIVuIzdx—Judx— J a—uuda: jVu-Vvdx—Jvdx— J %vda.
Q 30 Q Q 30

From the second equation of (6.3), we see that

_jg—zudo (% J udo) j u=%(j udo)z.

0Q 0Q 0Q 0Q
On the other hand, we have
ou ou ou
- | —vdo=- —vdo - —vdo
J ov J ov J ov
2Q 2Qn{u(x)>0} 2Qn{u(x)=0}
ou
:( juda) J vdo - j —vdo
ov
0QN{u(x)>0} 0QN{u(x)=0}
ou 1
:< J )Jvdo— J (—+—Juda>vda
ov m
00Nn{u(x)=0} 0Q
1
=( j ) J vd0+<ﬁjud0> J vdo
0QNn{v(x)>0} 0Q 0QN{v(x)<0}
J u da J vdo
20 00N {u(x)=0}
N{v(x)<0}
0 0 1
- J —uvda— J (—u+—Jud0>vda
ov ov
QN {u(x)=0} 00N {u(x)=0} Yo}
n{v(x)<0} n{v(x)>0}

S(ijudo)J.Ivlda— J a—uvd J (%+ijuda>vda.
m ov oV m

0Q 0Q 0QNn{u(x)=0} 0QN{u(x)=0} 0Q
n{v(x)<0} n{v(x)>0}

It follows from the third equation of (6.3) that

<au(x) + % J u da)v(x) >0 forallx € 0Qn{u(x)=0}n{v(x)> 0},

0
00
and hence 5 L
J (_u + — J uda)vdazo.
ov
20n{u(x)=0} aQ
N{v(x)>0}
Since u € C1(Q) satisfies u > 0in Q, it follows that ‘3—3(x) < 0on oQ N {u(x) = 0}, and hence
ou
—vdo>0.
[ a0
20N {u(x)=0}
N{v(x)<0}

Thus we obtain

—Ja—uvda<<1 Juda) lelda,
ov m

0Q 0Q 0Q

(6.4)
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and hence
IVu-Vvdx—Jvdx— J %vd0< IVu-Vvdx Jvdx+<l J udo) Ilvldo
ov m
Q Q 20 Q Q 20 o0
1J-IVuI2 dx + lJ-IVVI2 dx — jvdx
2 2
¢ 2
1
(J do) +m(]'v'd") -
20
Substituting this into (6.4) yields that g, (u, Q) < Jm(v, Q). O

For m > 0, it follows from the discussion above that if u € H(Q) is a critical point of J,,(-, Q), then u > 0
in Q. If, in addition, u > 0 in Q, then it follows from (6.3) that u solves

-Au=1 in Q,

a_u:_l j udo onoQ.
ov m

0Q

Thus it follows from the standard elliptic theory that u € C*#(Q) for all 0 < B < 1. However, the following
example shows that there exists a hounded C?-domain Q such that any minimizer u € H(Q) to (-, Q) has
zero points on 0Q.

Example 6.3. Forn=2and Q = {x e R? : 1 < |x| < 2},if 0 < m < 37 - 4mIn 2, then

1
u(x) = —Z|X|2 +cilnx|+¢c, forxeQ,
with
m+3m 2m - (m-m)in2

C(il=———, ()=
Y Om+anin2 2 2m+4mln2

})

is the unique minimizer of J,,(-, Q) over H'(Q).

Proof. Notice that 0Q = 0B1 U 0B5. Itis easy to see that u > 0in Q U 0B1 and u = 0 on 0B5, and it satisfies

-Au=1 in Q,
0 1
ou__- J u onoBy,
ov m
) 0B
0
au > —— J u onoBb;
ov m
00

From Lemma 6.2, u is a minimizer of (-, Q) in H1(Q). O

Proposition 6.4. Ifu € W22(Q) is a critical point of Jm(-, Q), then it is also critical with respect to the domain
variation, i.e.

d ¢
— Q) =

dt‘t:()gm(u ,0)=0

where ut(x) = u(F(t, x)), and F(-, -): (=68, 8) x Q — Q is a C'-family of C*-diffeomorphism satisfying

F(0,x)=x forallx € Q,
F(t,x) € 0Q forall (x,t) € 0Q x (-6, 6).

Proof. Define the deformation vector field n(x) = 4|,_,F(t, x) for x € Q. Then

nx) e Ty(0Q) or nx)-v(x)=0 forallxe 0Q.
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By direct calculations, we have

P ax) =5 [iwu avnaxe |
dt|t 0( JIVuI dx 5 [Vu|” divn dx + uu,n]dx
Q Q

Q
%J|VH| d1vndx+Jn Vu—da JAu(n Vu)dx—ljn V(IVul?) dx
Q 00 Q Q
1 5 ou
-3 Jle(IVuI n)dx + J 11~Vu$ do - JAu(n-Vu)dx
Q Yo) Q
1 2 ou
-5 JIVuI r1-vd0+Jn-Vudx+ J rz-VuEdo
20 Q 20
—J -Vudx+J Y u%da
=1n N - Vtan ov ,
Q o0

where we have used the first equation of (6.3), and Vigqu = (I, - v® v)Vu.

A1 o a3 s [ e

0Q 0Q 0Q

d t
Elt:()(— J u dx) =- J n-Vudx.
Q

Q

It is readily seen that

Putting these identities together, we obtain that

d t ou 1 ou 1
il om0 = [ Vanu(G5 e [ udo)do= [ n-Van( T 1 [ udo)do=o.
oQ o0 2Qn{u>0} 20
This completes the proof. O

Definition 6.5. Given a bounded C2-domain Q c R", let u = ug € H'(Q) be the unique minimizer of (6.1).
We say that (u, Q) is a critical point of g, (-, -) if either I(¢) = Jm(uq, Q(t)) is not differentiable at ¢ = O, or
d
T Im(uae, Q) =0, (6.5)
t=0
where Q(t) = {F(t, x) : x € Q} and uq() is the unique minimizer of g, (-, Q(t)) over HY(Q(t)). Here
F(t,x): (=6,8) x Q > R"

is any C!-family of C2-volume preserving diffeomorphism, that is generated by a vector field € C2(Q, R"),

i.e.
dF

dt
Here (uq(), Q(0)) = (u, Q).

(t,x) =n(F(t,x)), FO,x)=x, forallxeQ, -6<t<Sé.

Theorem 6.6. For m > 0 and a bounded C?-domain Q c R", let uq be the unique minimizer of Jm (-, Q) over
HY(Q). If uq is positive in Q, then (uq, Q) is a critical point of Jm( - , - ) if and only if the following identity holds:

1 1/1 2 1
Z|VianUol? - ug - —<— J ug) + (— J uQ>uQH = constant onoQ, (6.6)
2 2\m m
o0 o0
where H denotes the mean curvature of 0Q. In particular, for any ball Bg ¢ R" with radius R, (ug,, Br) is
a critical point of Jm (-, -).

Proof. For simplicity, denote u = ugq. Since u € C(Q) is positive, it follows that u solves (6.5) so that we have
u € C12(Q) n W22(Q). Hence there exists 8o > 0 such that u > 8o in Q. Fora small 0 < §; < 6, and an open
setU > Q,let F(t, x): (-81, 81) x U — R" bea Ct-family of C2-volume preserving diffeomorphism, generated
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by a vector field n € C2(U, R"). It is readily seen that Q(t) = F(t)(Q), -6 < t < 61, is a C'-family of bounded
C2-domains. By an argument similar to that of Proposition 6.1, we can show that u(t) = uq(F(t,-)) — u
in C°(Q) as t — 0 so that there exists 0 < 6, < §; such that u(t)(y) > % for y € Q(f) and ¢ € (-85, 62).
Hence u(t), -6, < t < 6>, solves
-Au(t)=1 in Q(t),
0
ov

u(t):—% j u(t)(y)do on oQ(t). (6.7)

20(6)

Applying Proposition 6.1 again, we have that, forany 1 < p < oo,

luOllw22cay) + lu®lwrr@e) < Cp), te (=62, 87).

This implies J,(u(t), Q(t)) € C1((-62, 62)).
It follows from |Q(t)| = |Q| for -6, < t < 6, that fQ divny = 0. Now we calculate ditam(u(t), Q(t)) for
t € (=67, 67). We claim that

Lm0, 000 = [ [5¥anF - 21vu0F -ue+ (o [ uo)uoHO|1-vdo
2Q(t) 20(t)
for all t € (-85, 6,). Here H(t) denotes the mean curvature of 0Q(t), and Vianf = (I, — v ® v)Vf denotes the
tangential derivative of f on 0Q(t).
To simplify the proof, denote u(t, x) = u(t)(x), and set v(¢t, x) = %u(t, x), x € Q(t). Notice that Q = Q(0)
and uq(x) = u(0, x), x € Q. Recall the formula [20, Corollary 5.2.8]

d 0
[ rena= | It yrdy+ | ey vty ao 6.8)
Q(t) Q(t) 0Q(t)

forany f € C1({(t, x) : t € (-62, 62), x € Q(t)}), where v(¢t, - ) denotes the outward unit normal of 0Q(t). Apply-
ing (6.8), we can calculate

— d 1 2
Il(t)za J EIVu(t,X)I dx
Q(t)
= j vu(t, x) - Vv(t, x) dx + J %IVu(t,x)lzn(x)-v(t,x)do
Q(t) 0Q(t)
- j Au(t, )v(t, x) dx + j W(t, )dyult, x) do + j %IVu(t,x)Izn(x)-v(t,x)do,
Q(t) 2Q(t) 2Q(t)

I3(t) = % J u(t, x)dx = J v(t, x) dx + J u(t, x)n(x) - v(t, x) do.
0) 0 0(t)
Also, recall the formula [20, Proposition 5.4.18]
4 J fit, x) dx = j (g(t,x)+ﬂ(t,x)n(x)-v(t,x)>d0+ J fit, OHB () - v(t, x)do (6.9)
dt ot ov
0Q(t) 0Q(t) 0Q(t)

forany f € C*({(t, x) : t € (-63, 82), x € Q(t)}). Applying (6.9) and (6.7), we find

L(t) = %{%( j u(t, x) do)z}

00,

=(% J u(t,x)da) J <v(t,x)+(%(t,x)+u(t,x)H(t,X))r1(X)'V(t,X))dG

2Q(t) 2Q(1)
=- j o 0Vt 0+ (a—”(t, X) + u(t, OH(E 0 )10 - (E, )| do
ov ov
20(8)
where H(t, x) = H(t)(x) denotes the mean curvature of 0Q(t) at x € 0Q(t).
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Adding I, (t), I,(t) and —I5(t) together, and applying the first equation of (6.7), we obtain that

d
7p9m@(0), Q0) = (D) + (D) - I3(0)

= j (-Au(t, x) — 1)v(t, x) dx

Q) 2
+ I (lqu(t,X)Iz—‘a—u’ (£, x) +u(t, x)
2 ov

0Q(t)
_ g—s(t, x)u(t, x)H(t, X))rl(x) “v(t, x)do

B 1 5 1ljou)?

= J (E'Vtanu(txx)l _Elﬁl (t, x) + u(t, x)
30(t) ou

- E(t’ x)u(t, x)H(t, x))n(x) -v(t, x)do. (6.10)

Thus, by setting ¢t = 0 and applying the second equation of (6.7), we obtain that
1|0u|? 1
5 $| +u—(a J ud0>uH>n(x)-vda_ (6.11)

1
A1 gaw®, o) = [ (F1vinut -
0Q 0Q

dtli=o

Note that, for any given C*-family of volume preserving C2-diffeomorphism maps F(t, x): (=81, 81) x Q — R"
for some 671 > 0, it is necessary that the velocity field n satisfies IBQ n -vdo = 0. Substituting such an n
into (6.11), we see that (6.6) holds if and only if (uq, Q) is a critical point of Jp, (-, - ).

Recall that, when Q = Bg, the unique critical point of J,,,( -, Bg) is given by

RZ — |x|? m

on Ty R2’ X € Bg, (6.12)
n

ug,(x) =

where w, is the volume of the unit ball in R™. Since up, is smooth and positive in B, and satisfies (6.6), it
follows that (up,, Br) is a critical point of g, (-, -). O

7 Stability of (UBR, Br)
It follows from Theorem 6.6 that, for any R > 0, (ug,, Br) is a critical point for J,;( -, -) for any m > 0. In this

section, we will prove Theorem 1.7, namely, (up,, Br) is a stable critical point of J,, (-, -).

Proof of Theorem 1.7. 1t follows from the discussion in the previous section that there exists §o > 0 such that
u(t, x) = ug(y(x) is positive, satisfies (6.7) and is smooth in Q(t) for t € (-6, 8). Hence, by formula (6.10), we
have that, for t € (-6, §),

2
im0, 000 = [ [519ue0 - [Sh[ €0 - w0 - Shie, vute, 0HE 0|10 -vie, 1) do
20(8)
= I(t) + II(¢) + III(E) + IV (). (7.1)

To simplify the presentation, set
ou
vix) = 5:(0,%),  uo(x) =u(0,x), x & Bg,

and {(x) = n(x) - v(x) for x € 0Bg. From the volume constraint |Q(t)| = |Bg| for t € (-6, §), we claim that

j {00 do = J div o) dx = 0, (7.2)
3By Br
J {(x)divn(x)do = J div(divnp ) dx = 0. (7.3)

0Br Br
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To see this, notice that, since |Q(t)| = JBR JF(t, x) dx is constant, we have

i| J]F(t X) dx = d—2| J]F(t X)dx =0
dtli=o ’ T dt? o ’ -

BR BR

while by direct calculations, we have
ditJF(t, x) = (divn o F(t, x))JF(t, x)

and

2
%]F(t, x) = (divn o F(¢, x))% + (V divn o F(t, x))(nn o F(t, x))JF(t, x).

Thus we obtain
J divn(x) dx =0,
Br
J div(div nn)(x) dx = J((div n)2 +nvdivny)(x)dx =0
Bg Br
so that (7.2) and (7.3) hold.
From (6.12), we see that

Ug and Vug(x) = —% on 0Bg; S - n on 0Bg.

- n2w,Rn-2

Applying (6.9), we have

%ltz()(% J u(t, x) da) = % J <V(x) + %(x)((x) + uo(X)H(x)((x)) do

0Q(t) 0Br
1 n-1 R 1
= a J V(X) do + (W - ﬁ) J ((X) do = E J V(X) dU, (7.4)
0BRr 0Bgr 0B

where we have used H = % on 0Bg.
Now we want to show that v solves the following boundary value problem in Bg:

—-Av=0 inBg,

(7.5)
ﬂzﬁ on 0Bg.
oV n

To see (7.5), let ¢ € C{°(Br+1). Then, by (6.8), we have

0= %’ j (Au(t, x) + 1)p(x) dx = J Av(x)p(x) dx + J (Augp + 1) (x){(x) do = J Av(x)p(x) dx,
=05 Br By Bx
where we have used the fact that Aup + 1 = 0 on 0Bg. Since ¢ is arbitrary, we conclude that Av = 0 in Bg.

To show v satisfies the boundary condition of (7.5) (second equation), we apply (7.4) and (6.9) and proceed
as follows:

0= %l I ¢(x)[v(t, x) - Vu(t, x) + (% J’ u(t,y) do)] do
tzoao(t) 20(t)
= J ¢(X)<% - VV(X) + %(O,X) -Vuo + [% V(I);_I> -Vuo + % ® ;—2 : Vzuo]((x)> do
o + <% J v(x) da) J ¢(x)do + J ¢(x)<% + (% J ug(x) da))H(x)((x) do
OBy By 3B 0B
- | qb(x)(ag(vx) w0+ | veodo). (7.6)

0Br 0Br
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where we have used the following facts:

<%(O,x), Vuo(x)> = —§<%(O,X), V(O,X)> =0 onoBg,

X X 1x X
Zov(=) Vup=-==2.v[=)-x=0 OBg,
R (le) o= "UR <|x|)x On OR
XX .y tx ox 1
R®R.Vuo— nR®R'I"_ = on 0By
and 5 1
$+Ejuo(x)d0=0 on 0Bg.
aBR
It follows from (7.6) that
0 1
—V=£—— J v(x)do on 0Bg. (7.7)
ov n m
0Bg

Since Av = 0 in Bg, we have JaBR % do = 0, which, combined with (7.7) and .[BBR { = 0, implies that
1 J v(x)do = 0. (7.8)
m
3Br
Thus v solves (7.5). From (7.8) and (7.4), we also have that
1
i| (— J u(t, x) da) =0. (7.9)
dtli—o\ m
o)

Next we want to compute the second-order variation based on (7.1). First, applying (6.9), we have

) d 1
1) =3| [ 31vulon0o-ve.xdo
20(t)
0
- j (V00 - W04 + 5 V(0P 0(0) - 5710, ) do
0Br 5 1 5
+ [ (100 v2uot0) - Vuom() - vix) + 31Vuo(0P - V(0 - v(x) ) do
0Br
+ J %Itho()f)IzH(X)(n(X)-V(X))2 do, (7.10)
0Br

where we have used the fact that v(x) = v(0, x) for x € 0Bg.
Since (%(0, X), v(x)) = 0 and n(x) = {(x)v(x) on dBg, we see that

J %wuo(xnzn(x). %(o, x)do = 0. (7.11)
0Bgr

Since v(x) = § and Vuo(x) = -2 on 0Bg, by (7.5), we see that

J Vo (x) - Vv(x){(x) daz—% J ?(x) do. (7.12)
aBR aBR
Direct calculations yield
. 2 2
[ 160 Vw00 VoGm0 v do = [ nie0-505- 50400 dor
aBR aBR
R
- [ aw niwdo- 5 [ wde. Ga3)

0Br 0Bg
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Notice that, on 0Bg, we have the formula
n-Vn-v)= v,V = {div(y) - {3 divy = {divy - {2H.

Thus we obtain that

| S1vu00oRn Ve v do = [ S17uet) P diva) - (20 HW) do

bBR aBR

Substituting (7.11), (7.12), (7.13), (7.15) into (7.10) and applying (7.3), we obtain that

1'0) = 1v 20(x) di d—R2 di do=0
(0) = J 5| uo(x)]°¢(x) div n(x) 0=53 J {(x)divn(x) do = 0.
aBR aBR

Next, by (7.3) and (6.9), we compute

11’ (0) = —%| J u(t, )n(x) - v(t, x) do
=0 500
0
=- J (V) ¢(x) + up(x)n(x) - a—]t/(O, x))do

0Br

- [ (229 2200) 4 woom - vin0 vy ) do - [ w020 do

ov
bBR aBR

_ j (v(x)((x) - g(z(x)> do - j o (0)(x) div 1(x) do

aBR aBR

=% [ Pwao- [ viogo o,
aBR aBR

where we have used the fact n(x) - %(0, x) =0, (7.14), and (7.16) on 0Bg.
Recall that the mean curvature of 0Q(¢) satisfies (see Huisken [22])
oH

E(t’ x) = =Asa@pn(x) - v(t, x) - [A(t, O)1Pn(x) - v(t, x),  x € dQ(b),

where Ayq(y) is the Laplace operator on 0Q(t) and A is the second fundamental form of 0Q(¢).

Applying (7.9), (6.9), (7.14) and (7.15), we can compute

oy 4 1 2
II'0) = _Eflt_oKEaQJ([) u(t, x) do) ad[t) n(x) - v(t, x) do]
2
:_(% J uo) %| J n(x) - v(t, x)do
3Br =0 5010
2
- _5_2 J (n(x) : %(0, X) + 000 - V(0 - v(x) + H(x)(z(x)) do
aBR
2
- ‘%J (neo- %(0, )+ (00 div () - COH(0) + H0? () ) do
Br
2
_ _’:_ZBJ 00 div(x) do = 0.
Br

Applying (7.9), (6.9), (7.18) and (7.14), and using

n-
R2

1 R
= I uo(x)do=—, [AX* =
m n

3By

for x € 0Bg,

DE GRUYTER

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)
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we can compute
IV'(0) = il I (1 I u(t, y) da)u(t XH(E, )00 - t, x) do
dt =0 m ) ) ’ )
0Q(t) 0Q(t)

= J %lt:0<i J u(t,y)da)uo(X)H(X)((X)dU

0Bg m 2Q(6)
+ <% J Up(x) dU) J’ (v(x) + n(x) - Vue())HX){(x) do
0B 0BR
+<% J uO(X) da) J' u()(X)(—AaBR((X)_|A(X)|Z<«(X))<«(X) do
0B 0BR
+<% J uo(x) do) J uo(COH(O) () div n(x) - (2(OH(x)) do
0Br 0BR
(i [ o do) [ wotor? g2 do
BBR aBR
= g[nl_e ! J v(x){(x) do - %1 J 2(x)do
B 3By
i # j (=808, {(%) = |AM)I*{(0)¢0) da]
0B
= _(n ;zl)R J' CZ(X) do + n-1 J V() do
dBg 3By
t st | (Wand0oP - T 6700) do.

0Br

Therefore, by adding (7.10), (7.19), (7.17) and (7.20) together, we obtain
2

% 0sz(u(t), Q) =1(0) +1I'(0) + 1T’ (0) + IV'(0) = I'(0) + IV'(0)
t=

= % j (z(x)da—% J v(x){(x) do
0Br 0Br
m
T Bw, R

[ (1Weandeor - 2226200 ) do

R
0Br

Since IaBR {(x) do = 0, it follows from the Poincaré inequality on dBg that

-1
[ (1Wangt02 - 24200 ) dor> 0.
0Br
Now we claim that R .
o) J {*(x)do - - j v(x){(x)do = 0.
0Bg 0BR

(7.20)

(7.21)

(7.22)

(7.23)

To see this, notice that, by (7.8), ja By v(x) do = 0. Recall that the first Stekloff eigenvalue on By is %’ which

implies that
I v2(x)do <R jIVv(x)Iz dx.

0Br Br
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Applying equation (7.5) for v, we have

J|VV(X)|2 dx = J’ aV(X)v(x) do = % J {x)v(x)do < %( I V2 (x) dU)Z(M!R (0 610)E

ov
BR aBR aBR aBR
R: 3 7
< T(J|Vv(x)|2da) (j (2(x)da) .
Bgr 0Br

This implies

| v do = [iwveor dxs [ o

0Br Br 0BR
Hence (7.23) holds. Putting (7.22) and (7.23) into (7.21), we conclude that
dz
d—t2|[:03m(u<t), () > 0.
This completes the proof. O
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