
Vol.:(0123456789)

Journal of Elliptic and Parabolic Equations (2020) 6:71–98
https://doi.org/10.1007/s41808-020-00055-z

1 3

Weak solutions of non‑isothermal nematic liquid crystal 
flow in dimension three

Hengrong Du1 · Yimei Li2 · Changyou Wang1

Received: 9 January 2020 / Accepted: 27 February 2020 / Published online: 13 March 2020 
© Orthogonal Publisher and Springer Nature Switzerland AG 2020

Abstract
For any smooth domain Ω ⊂ ℝ

3 , we establish the existence of a global weak solu-
tion (�, �, �) to the simplified, non-isothermal Ericksen–Leslie system modeling the 
hydrodynamic motion of nematic liquid crystals with variable temperature for any 
initial and boundary data (�0, �0, �0) ∈ � × H

1(Ω,�2) × L
1(Ω) , with �0(Ω) ⊂ �

2
+
 

(the upper half sphere) and ess infΩ𝜃0 > 0.

Keywords  Non-isothermal nematic liquid crystals · Ginzburg–Landau 
approximation · Entropy inequalities

Mathematics Subject Classification  35A05 · 76A10 · 76D03

1  Introduction

The liquid crystal constitutes a state of matter which is intermediate between the 
solid and the liquid. In the nematic phase, molecules move like those in fluid, while 
they tend to reveal preferable orientations. A non-isothermal liquid crystal flow in 
the nematic phase can be described in terms of three physical variables: the veloc-
ity field � of the underlying fluid, the director field � representing the averaged 
orientation of liquid crystal molecules, and the background temperature � . The 
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evolution of the velocity field is governed by the incompressible Navier–Stokes 
system with stress tensors representing viscous and elastic effects. In the nematic 
case, the director field is driven by transported negative gradient flow of the 
Oseen–Frank energy functional which represents the internal microscopic damping 
[3, 8]. We consider the non-isothermal setting in which the temperature is neither 
spatial nor temporal homogeneous and thus contributes to total dissipation of the 
whole system.

A great deal of mathematical theories has been devoted to the study of nematic 
liquid crystals in the continuum formulation. In pioneering papers [4, 5, 13] 
Ericksen and Leslie have put forward a PDE model based on the principle of con-
servation laws and momentum balance. There has been extensive mathematical 
study of analytic issues of the simplified Ericksen–Leslie system. In 1989 Lin 
[15] first proposed a simplified Ericksen–Leslie model with one constant approxi-
mation for the Oseen–Frank energy: (�, �) ∶ Ω ×ℝ+ → ℝ

n × 𝕊
2 solves

where Ω ⊂ ℝ
n ( n = 2 or 3), P ∶ Ω ×ℝ+ → ℝ denotes the pressure, 𝜇 > 0 repre-

sents the viscosity constant of the fluid, and (∇�⊙ ∇�)ij =
∑3

k=1
𝜕xi

�
k
𝜕xj

�
k denotes 

the Ericksen stress tensor. It is a system of the forced Navier–Stokes equation cou-
pled with the transported harmonic map heat flow to �2 . The readers can consult 
[25] on the study of the Navier–Stokes equations and [22] for some recent devel-
opments on harmonic map heat flow. The rigorous mathematical analysis was ini-
tiated by Lin-Liu [17, 18] in which they established the well-posedness of so-
called Ginzburg–Landau approximation of (1.1): (�, �) ∶ Ω ×ℝ+ → ℝ

n ×ℝ
3 

satisfies

where 𝜀 > 0 is the parameter of approximation. They have obtained the exist-
ence of a unique, global strong solution in dimension 2 and in dimension 3 under 
large viscosity � . They have also studied the existence of suitable weak solutions 
and their partial regularity in dimension 3, which is analogous to the celebrated 
regularity theorem by Caffarelli et  al. [1] (see also [16]) for the dimension 3 
incompressible Navier–Stokes equation. Later on Linet al. [19] adopted a differ-
ent approach to construct global Leray–Hopf type weak solutions (see [12]) for 
dimension 2 to (1.1) via the method of small energy regularity estimate. Huang 
et al. [10] extended the works of [19] to the general Ericksen–Leslie system by a 
blow up argument.

(1.1)

⎧
⎪⎨⎪⎩

𝜕t� + � ⋅ ∇� + ∇P = 𝜇Δ� − ∇ ⋅ (∇�⊙ ∇�),

∇ ⋅ � = 0,

𝜕t� + � ⋅ ∇� = Δ� + �∇��2�,

(1.2)

⎧⎪⎨⎪⎩

𝜕t� + � ⋅ ∇� + ∇P = 𝜇Δ� − ∇ ⋅ (∇�⊙ ∇�),

∇ ⋅ � = 0,

𝜕t� + � ⋅ ∇� = Δ� +
1

𝜀2

�
1 − ���2��,
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The existence of global weak solution to (1.1) in dimension three is highly 
non-trivial due to the appearance of the super-critical nonlinear elastic stress 
term ∇ ⋅ (∇�⊙ ∇�) . Some preliminary progress was made by Lin and Wang [21], 
where under the assumption that an initial configuration �0 lies in the upper half 
sphere, i.e.,

the existence of global weak solution was constructed by the Ginzburg–Laudau 
approximation method and a delicate blow-up analysis. See [20] for a review of 
recent progresses on the mathematical analysis of Ericksen–Leslie system.

Recently there has been considerable interest in the mathematical study 
for the hydrodynamics of non-isothermal nematic liquid crystals. Recall that 
a simplified, non-isothermal version of (1.2) can be described as follows. Let 
(�, �, �) ∶ Ω ×ℝ+ → ℝ

n ×ℝ
3 ×ℝ+ solve

where � ∶ Ω ×ℝ+ → ℝ
n is the heat flux. Feireisl et al. [7] proved the existence of a 

global weak solution to (1.4) in dimension 3. Correspondingly, non-isothermal ver-
sion of (1.1) reads (�, �, �) ∶ Ω ×ℝ+ → ℝ

n × 𝕊
2 ×ℝ+ solves

Hieber and Prüss [9] have established the existence of a unique local Lp − Lq strong 
solution to (1.5), which can be extended to a global strong solution provided the 
initial data is close to an equilibrium state. For the general non-isothermal Erick-
sen–Leslie system, De Anna and Liu [2] have obtained the existence of global strong 
solution in Besov spaces provided the Besov norm of the initial data is sufficiently 
small. On � 2 , Li and Xin [14] have showed that there exists a global weak solution 
to (1.5). A natural question is that in dimension 3 whether (1.5) admits a global 
weak solution. The main goal of this paper is to give a positive answer under the 
additional assumption (1.3).

This paper is organized as follows. We devote Sect.  2 to the derivation of 
thermodynamic consistency of a simplified, non-isothermal Ericksen–Les-
lie system for nematic liquid crystals. The weak formulation for (1.5) model is 
demonstrated in Sect. 3. In Sect. 4 we will establish the weak maximum princi-
ple for the free drifted Ginzburg–Landau heat flow with homogeneous Neumann 

(1.3)�0(Ω) ⊂ 𝕊
2
+
∶=

{
y = (y1, y2, y3) ∈ ℝ

3 ∶ |y| = 1, y3 ≥ 0
}
.

(1.4)

⎧
⎪⎪⎨⎪⎪⎩

𝜕t� + � ⋅ ∇� + ∇P = ∇ ⋅ (𝜇(𝜃)∇�) − ∇ ⋅ (∇�⊙ ∇�),

∇ ⋅ � = 0,

𝜕t� + � ⋅ ∇� = Δ� +
1

𝜀2

�
1 − ���2��,

𝜕t𝜃 + � ⋅ ∇𝜃 = −∇ ⋅ � + 𝜇(𝜃)�∇��2 + ���Δ� +
1

𝜀2
(1 − ���2)����

2

,

(1.5)

⎧⎪⎨⎪⎩

𝜕t� + � ⋅ ∇� + ∇P = ∇ ⋅ (𝜇(𝜃)∇�) − ∇ ⋅ (∇�⊙ ∇�),

∇ ⋅ � = 0,

𝜕t� + � ⋅ ∇� = Δ� + �∇��2�,
𝜕t𝜃 + � ⋅ ∇𝜃 = −∇ ⋅ � + 𝜇(𝜃)�∇��2 + ��Δ� + �∇��2���2.
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boundary condition. In Sect. 5, we will establish a priori estimates and the exist-
ence of weak solutions to the non-isothermal Ericksen–Leslie system. In Sect. 6, 
we will show the existence of weak solutions to the non-isothermal Ericksen-
Leslie system through detailed analysis of convergence procedure.

2 � Thermal consistency of the non‑isothermal nematic models

2.1 � Non‑isothermal Ginzburg–Landau approximation

First we recall the equations of � and � in the non-isothermal Ginzburg–Laudau 
approximation (1.4):

where �
�
(�) = �

�
F
�
(�) , F

�
(�) =

(|�|2−1)2
4�2

.
The difference between (2.1) and the isothermal case (1.2) is that the viscos-

ity coefficient � is a function of temperature � . Here the temperature plays a role 
as parameters both in the material coefficients and the heat conductivity coeffi-
cients, which is to be discussed later. To make the system (2.1) a close system, we 
need the evolution equation for � . The equation of thermal dissipation is derived 
according to First and Second laws of thermodynamics [24].

First we introduce some basic concepts in thermodynamics. The internal 
energy density reads

and the Helmholtz free energy is given by

Denote the entropy by � in the Second law of thermodynamics, which is determined 
by temperature through the Maxwell relation

The internal energy can be obtained by (negative) Legendre transformation of free 
energy with respect to � , i.e.,

(2.1)

⎧
⎪⎨⎪⎩

𝜕t� + � ⋅ ∇� + ∇P = div(𝜇(𝜃)∇� − ∇�⊙ ∇�),

∇ ⋅ � = 0,

𝜕t� + � ⋅ ∇� = Δ� − �
𝜀
(�),

eint
�

=
1

2
|∇�|2 + F

�
(�) + �,

�
�
=

1

2
|∇�|2 + F

�
(�) − � ln �.

(2.2)� = −
��

�

��
= 1 + ln �.

eint
�

= �
�
+ ��.
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The heat flux � in the equations of both � of (1.4) and (1.5) satisfies the generalized 
Fourier law:

where k(�) and h(�) represent thermal conductivities. The evolution of entropy can 
be written as follows.

where � is the entropy flux which is determined by the heat flux through the Clau-
sius–Duhem relation

and the entropy production Δ
�
≥ 0 is given by (2.8) below.

The thermal consistency of (1.4) is given by the following proposition.

Proposition 2.1  Suppose (�, �, �) is a strong solution to (1.4). Then

(1)	 (First law of thermodynamics). The total energy etotal
�

=
1

2
|�|2 + eint

�
 is conserva-

tive. More precisely, we have

where

and D
Dt

∶=
�

�t
+ � ⋅ ∇ denotes the material derivative.

(2)	 (Second law of thermodynamics). The entropy cannot decrease during any irre-
versible process, which means the entropy production Δ

�
 is alway non-negative, 

i.e., 

Proof  We first prove (2.6). By direct calculations, we have

(2.3)�(�) = −k(�)∇� − h(�)(∇� ⋅ �)�

(2.4)�t + � ⋅ ∇� = −∇ ⋅ � + Δ
�
,

(2.5)� = ��,

(2.6)
D

Dt
etotal
�

+ ∇ ⋅ (Σ + �) = 0,

(2.7)Σ = P� − 𝜇(𝜃)� ⋅ ∇� + ∇�⊙ ∇� ⋅ � − (∇�)T
D�

Dt
,

(2.8)Δ
�
=

1

�

(
�(�)|∇�|2 + ||||Δ� +

1

�2
(1 − |�|2)�||||

2

− � ⋅ ∇�

)
≥ 0.
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Note that (2.8) follows directly from (2.2), (2.4), (1.4)4 , and (2.3), i.e.

This completes the proof. 	�  ◻

2.2 � Non‑isothermal simplified Ericksen–Leslie system

As � tends to 0, due to the penalization effect of F
�
(�) , formally the equation of � in 

(2.1) converges to

where |�| = 1 . This is a “transported gradient flow” of the Dirichlet energy 
1

2
∫
Ω
|∇�|2 dx for maps � ∶ Ω → �

2.
As in the previous section, we introduce the total energy for (1.5):

and the entropy evolution equation:

where Δ0 is the entropy production given by (2.12) below.
The thermal consistency of (1.5) is described by the following proposition.

Proposition 2.2  Suppose (�, �, �) is a strong solution to (1.5). Then

(2.9)

D

Dt
etotal
𝜀

= � ⋅

D�

Dt
+ ∇� ∶

D

Dt
∇� + f

𝜀
(�) ⋅

D�

Dt
+

D𝜃

Dt

= � ⋅ div(−PI + 𝜇(𝜃)∇� − ∇�⊙ ∇�) + ∇� ∶ ∇
D�

Dt
− ∇�⊙ ∇� ∶ ∇�

+ �
𝜀
(�) ⋅

D�

Dt
− ∇ ⋅ � + 𝜇(𝜃)|∇�|2 + ||||Δ� +

1

𝜀2
(1 − |�|2)�||||

2

= div(−P� + 𝜇(𝜃)� ⋅ ∇� − ∇�⊙ ∇� ⋅ �) − 𝜇(𝜃)|∇�|2 + ∇�⊙ ∇� ∶ ∇�

+ div
(
(∇�)T

D�

Dt

)
− (Δ� − �

𝜀
(�)) ⋅

D�

Dt
− ∇�⊙ ∇� ∶ ∇� − ∇ ⋅ �

+ 𝜇(𝜃)|∇�|2 + ||||Δ� +
1

𝜀2
(1 − |�|2)�||||

2

= div
(
−P� + 𝜇(𝜃)� ⋅ ∇� − ∇�⊙ ∇� ⋅ � + (∇�)T

D�

Dt

)
− ∇ ⋅ �

= −div(Σ + �).

Δ
�
=

1

�

(
�(�)|∇�|2 + ||Δ� − f

�
(�)||2 − � ⋅ ∇�

)

=
1

�

(
�(�)|∇�|2 + ||Δ� − f

�
(�)||2 + k(�)|∇�|2 + h(�)|∇� ⋅ �|2

) ≥ 0.

�t� + � ⋅ ∇� = Δ� + |∇�|2�,

etotal =
1

2
(|�|2 + |∇�|2) + �,

(2.10)�t + � ⋅ ∇� = −∇ ⋅ � + Δ0,
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(1) (First law of thermodynamics). The total energy is conservative, i.e.,

where Σ = P� − 𝜇(𝜃)� ⋅ ∇� + ∇�⊙ ∇� ⋅ � − (∇�)T
D�

Dt
.

(2) (Second law of thermodynamics). The entropy production Δ0 is non-negative, 
i.e.,

Proof  From (1.5), we can compute

where we have used the fact |�| = 1 so that

This implies (2.11). From the entropy equation (2.10), Clausius–Duhem’s relation 
(2.5), the temperature equation in (1.5), and (2.3), we can show

This yields (2.12). 	�  ◻

3 � Weak formulation for Ericksen–Leslie system (1.5)

Throughout this paper, we will assume that � is a continuous function, and h, k are 
Lipschitz continuous functions, and

(2.11)
D

Dt
etotal + ∇ ⋅ (Σ + �) = 0,

(2.12)Δ0 =
1

�

(
�(�)|∇u|2 + |Δ� + |∇�|2�|2 − � ⋅ ∇�

) ≥ 0.

Detotal

Dt
=

D

Dt

(
1

2
(|�|2 + |∇�|2) + 𝜃

)

= � ⋅

D�

Dt
+ ∇� ∶

D

Dt
∇� +

D𝜃

Dt

= � ⋅ div(−PI + 𝜇(𝜃)∇� − ∇�⊙ ∇�)

+ ∇� ∶ ∇
D�

Dt
− ∇�⊙ ∇� ∶ ∇� − ∇ ⋅ � + 𝜇(𝜃)|∇�|2 + |||Δ� + |∇�|2�|||

2

= div(−P� + 𝜇(𝜃)� ⋅ ∇� − ∇⊙ ∇� ⋅ �) − 𝜇(𝜃)|∇�|2 + ∇�⊙ ∇� ∶ ∇�

+ div
(
(∇�)T

D�

Dt

)
− (Δ� + |∇�|2�) ⋅ Δ� − ∇�⊙ ∇� ∶ ∇�

− div� + 𝜇(𝜃)|∇�|2 + |Δ� + |∇�|2�|2
= −div(Σ + �),

(Δ� + |∇�|2�) ⋅ Δ� = |Δ� + |∇�|2�|2.

Δ0 =
1

�

(
�(�)|∇�|2 + |||Δ� + |∇�|2�|||

2

− � ⋅ ∇�

)

=
1

�

(
�(�)|∇�|2 + |||Δ� + |∇�|2�|||

2

+ k(�)|∇�|2 + h(�)|∇� ⋅ �|2
)

≥ 0.
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where � , � , k , and k are positive constants. We will impose the homogeneous 
boundary condition for �:

where � is the outward unit normal vector field of �Ω . It is readily seen that (3.2) 
implies that for Σ given by (2.7), it holds

We will also impose the non-flux boundary condition for the temperature function 
so that the heat flux � satisfies

Set

and

There is some difference between the weak formulation of non-isothermal sys-
tems (1.4) or (1.5) and that of the isothermal system (1.2) or (1.1). For example, an 
important feature of a weak solution to (1.2) is the law of energy dissipation

or

for (1.1).
In contrast with (3.5) and (3.6), we need to include a weak formulation both 

the first law of thermodynamics (2.11) and the second law of thermodynamics 
(2.12) into (1.4) or(1.5). Namely, the entropy inequality for the temperature equa-
tion in (1.4):

or in (1.5):

(3.1)0 < 𝜇 ≤ 𝜇(𝜃) ≤ 𝜇, 0 < k ≤ k(𝜃), h(𝜃) ≤ k for all 𝜃 > 0,

(3.2)�
||||�Ω = 0,

��

��

||||�Ω = 0,

(3.3)Σ ⋅ �|
�Ω = 0.

(3.4)� ⋅ �|
�Ω = 0.

� = Closure of C∞

0
(Ω;ℝ3) ∩ {v ∶ ∇ ⋅ v = 0} in L2(Ω;ℝ3),

� = Closure of C∞

0
(Ω;ℝ3) ∩ {v ∶ ∇ ⋅ v = 0} in H1(Ω;ℝ3),

H1(Ω,𝕊2) =
{
� ∈ H1(Ω,ℝ3) ∶ �(x) ∈ 𝕊

2 a.e. x ∈ Ω
}
.

(3.5)
d

dt �Ω

(|�|2 + |∇�|2)dx = −2�
Ω

(
�|∇�|2 + |Δ� − f

�
(�)|2)dx ≤ 0,

(3.6)
d

dt �Ω

(|�|2 + |∇�|2)dx = −2�
Ω

(
�|∇�|2 + |Δ� + |∇�|2�|2)dx ≤ 0

(3.7)
�tH(�) + � ⋅ ∇H(�)

≥ −div(H�(�)�) + H�(�)
(
�(�)|∇�|2 + |Δ� − f

�
(�)|2) + H��(�)� ⋅ ∇�,
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where H is any smooth, non-decreasing and concave function. More precisely, we 
have the following weak formulation to the non-isothermal system (1.5).

Definition 3.1  For 0 < T < ∞ , a triple (�, �, �) is a weak solution to (1.5), (3.8) if 
the following properties hold: 

i)	 � ∈ L∞([0, T],�) ∩ L2([0, T], �) , � ∈ L2([0, T],H1(Ω,�2)) , � ∈ L∞([0, T], L1(Ω)).

ii)	 For  any  � ∈ C∞
0
(Ω × [0, T),ℝ3) ,  wi th  ∇ ⋅ � = 0  and  � ⋅ �|

�Ω = 0  , 
�1 ∈ C∞

0
(Ω × [0, T),ℝ3) , and 𝜓2 ∈ C∞(Ω̄ × [0, T)) with �2 ≥ 0 , it holds 

 for any smooth, non-decreasing and concave function H.
iii)	 The following the energy inequality (2.11) 

 holds for a.e. t ∈ [0, T).
iv)	 The initial condition �(⋅, 0) = �0 , �(⋅, 0) = �0 , �(⋅, 0) = �0 holds in the weak sense.

Now we state our main result of this paper, which is the following existence 
theorem of global weak solutions to (1.5).

(3.8)

�tH(�) + � ⋅ ∇H(�)

≥ −div(H�(�)�) + H�(�)
(
�(�)|∇�|2 + |Δ� + |∇�|2�|2) + H��(�)� ⋅ ∇�,

(3.9)
∫

T

0 ∫
Ω

(
� ⋅ 𝜕t𝜑 + �⊗ � ∶ ∇𝜑

)

= ∫
T

0 ∫
Ω

(𝜇(𝜃)∇� − ∇�⊙ ∇�) ∶ ∇𝜑 − ∫
Ω

�0 ⋅ 𝜑(⋅, 0),

(3.10)
∫

T

0 ∫
Ω

(� ⋅ 𝜕t𝜓1 + �⊗ � ∶ ∇𝜓1)

= ∫
T

0 ∫
Ω

(∇� ∶ ∇𝜓1 − |∇�|2� ⋅ 𝜓1) − ∫
Ω

�0 ⋅ 𝜓1(⋅, 0),

(3.11)

�
T

0 �
Ω

H(�)�t�2 +
(
H(�)� − H�(�)�

)
⋅ ∇�2

≤ −�
T

0 �
Ω

[
H�(�)

(
�(�)|∇�|2 + |Δ� + |∇�|2�|2) − H��(�)� ⋅ ∇�

]
�2

− �
Ω

H(�0)�2(⋅, 0),

(3.12)�
Ω

(
1

2
(|�|2 + |∇�|2) + �

)
(⋅, t) ≤ �

Ω

(
1

2
(|�0| + |∇�0|2) + �0

)
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Theorem 3.1  For any T > 0, �0 ∈ � , �0 ∈ H1(Ω,�2) and �0 ∈ L1(Ω) , if �0(Ω) ⊂ �
2
+
 

and ess infΩ𝜃0 > 0 , then there exists a global weak solution (�, �, �) to (1.5), (3.8), 
subject to the initial condition (�, �, �) = (�0, �0, �0) and the boundary condition 
(3.2) and (3.4) such that

(1)	 � ∈ L∞
t
L2
x
∩ L2

t
H1

x
,

(2)	 � ∈ L∞
t
H1

x
(Ω,�2) , and �(x, t) ∈ �

2
+
 a.e. in Ω × (0, T),

(3)	 � ∈ L∞
t
L1
x
∩ L

p

t W
1,p
x  for 1 ≤ p < 5∕4 , �≥ ess infΩ�0 a.e. in Ω × (0, T).

The proof of Theorem 3.1 is given in the sections below.

4 � Maximum principle with homogeneous Neumann boundary 
conditions

In this section, we will sketch two a priori estimates for a drifted Ginzburg–Landau 
heat flow under the homogeneous Neumann boundary condition, which is similar 
to [21] where the Dirichlet boundary condition is considered. More precisely, for 
𝜀 > 0 , we consider

Then we have

Lemma 4.1  For 0 < T ≤ ∞ , assume � ∈ L2([0, T], �) and �0 ∈ H1(Ω,�2) . Suppose 
�
�
∈ L2([0, T];H1(Ω,ℝ3)) solves (4.1). Then

Proof  Set

Then v� is a weak solution to

(4.1)

⎧⎪⎪⎨⎪⎪⎩

�t�� + � ⋅ ∇�
�
= Δ�

�
+

1

�2

�
1 − ��

�
�2��

�
in Ω × (0, T),

∇ ⋅ � = 0 in Ω × (0, T),

�
�
(x, 0) = �0(x) on Ω,

� =
��

�

��
= 0 on �Ω × (0, T).

(4.2)|�
�
(x, t)| ≤ 1 a.e. (x, t) ∈ Ω × [0, T].

v𝜀 = (|�
𝜀
|2 − 1)+ =

{ |�
𝜀
|2 − 1 if |�

𝜀
| ≥ 1,

0 if |�
𝜀
| < 1.

(4.3)

⎧⎪⎪⎨⎪⎪⎩

�tv
� + � ⋅ ∇v� = Δv� − 2

�
�∇�

�
�2 + 1

�2
v���

�
�2
� ≤ Δv� in Ω × (0, T),

∇ ⋅ � = 0 in Ω × (0, T),

v�(x, 0) = 0 on Ω,

� =
�v�

��
= 0 on �Ω × (0, T).
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Multiplying (4.3)1 by v� and integrating it over Ω × [0, �] for any 0 < 𝜏 ≤ T  , we get

Thus v� = 0 a.e. in Ω × [0, T] and (4.2) holds. 	�  ◻

Lemma 4.2  For 0 < T ≤ ∞ , assume � ∈ L2([0, T];�) and �0 ∈ H1(Ω;�2) , with 
�0(x) ∈ �

2
+
 a.e x ∈ Ω . If �

�
∈ L2([0, T];H1(Ω;ℝ3)) solves (4.1), then

Proof  Set �
�
(x, t) = max{−e

−
t

�2 �
3
�
(x, t), 0} . Then

where

Multiplying (4.5)1 by �
�
 and integrating over Ω × [0, �] for 0 < 𝜏 ≤ T  , we obtain

Thus �
�
= 0 a.e. in Ω × [0, T] and (4.4) holds. 	�  ◻

Finally we need the following minimum principle for the temperature which 
guarantees the positive lower bound of �.

Lemma 4.3  For 0 < T ≤ ∞ , assume � ∈ L2(0, T;�) , �0 ∈ L1(Ω) with ess infΩ𝜃0 > 0 , 
and �

�
∈ L2([0, T];H1(Ω,ℝ3)) . If �

�
∈ L∞

t
(0, T;L2(Ω)) ∩ L2(0, T;W1,2(Ω)) solves

where �
�
= −k(�

�
)∇�

�
− h(�

�
)(∇�

�
⋅ �

�
)�

�
 , then

�
Ω

|v�(�)|2 + 2�
�

0 �
Ω

|∇v�|2 ≤ −�
�

0 �
Ω

� ⋅ ∇((v�)2) = 0.

(4.4)�
3
�
(x, t) ≥ 0 a.e. (x, t) ∈ Ω × [0, T].

(4.5)

⎧
⎪⎨⎪⎩

�t��
+ � ⋅ ∇�

�
− Δ�

�
= �

�
�
�
, in Ω × (0, T),

∇ ⋅ � = 0, in Ω × (0, T),

�
�
(x, 0) = 0, on Ω,

� =
��

�

��
= 0, on �Ω × (0, T),

�
�
(x, t) =

1

�2
(1 − |�

�
(x, t)|2) − 1

�2
≤ 0 a.e. in Ω × [0, T].

�
Ω

|�
�
|2(�) + 2�

�

0 �
Ω

|∇�
�
|2 = −�

�

0 �
Ω

� ⋅ ∇(�2
�
) + 2�

�

0 �
Ω

�
�
|�

�
|2

= 2�
�

0 �
Ω

�
�
|�

�
|2 ≤ 0.

(4.6)

⎧⎪⎨⎪⎩

�t�� + � ⋅ ∇�
�
= −∇ ⋅ �

�
+ �(�

�
)�∇��2 + �Δ�

�
− �

�
(�

�
)�2, in Ω × (0, T),

∇ ⋅ � = 0, in Ω × (0, T),

�
�
(x, 0) = �0(x), on Ω,

� = �
�
⋅ � = 0, on �Ω × (0, T),

(4.7)�
�
(x, t) ≥ ess infΩ�0 a.e. in Ω × [0, T].
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Proof  Let �−
�
= max

{
ess infΩ�0 − �

�
, 0
}
 . Then by direct computation, (4.6) implies 

that

where �−
�
= −k(�

�
)∇�−

�
− h(�

�
)(∇�−

�
⋅ �

�
)�

�
.

Multiplying (4.8)1 by �−
�
 and integrating over Ω × [0, �] for 0 < 𝜏 ≤ T  , we obtain

Therefore �−
�
= 0 a.e. in Ω × [0, T] , which yields (4.7). 	�  ◻

5 � Existence of weak solutions to (5.1)

In this section we will sketch the construction of weak solutions to (5.1) by the 
Faedo–Galerkin method, which is similar to that by [7, 17]. To simplify the presenta-
tion, we only consider the case � = 1 and construct a weak solution of the following 
system:

where �(�) = �
�
F(�) = (|�|2 − 1)�.

Let 
{
�i

}∞

i=1
 be an orthonormal basis of � formed by eigenfunctions of the Stokes 

operator on Ω with zero Dirichlet boundary condition, i.e.,

for i = 1, 2,… , and 0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n ≤ ⋯ , with �n → ∞.
Let ℙm ∶ � → �m = span

{
�1,�2,… ,�m

}
 be the orthogonal projection operator. 

Consider

(4.8)

⎧
⎪⎨⎪⎩

�t�
−
�
+ � ⋅ ∇�−

�
≤ −∇ ⋅ �

−
�
, in Ω × (0, T),

∇ ⋅ � = 0, in Ω × (0, T),

�
−
�
(x, 0) = 0, on Ω,

� = �
−
�
⋅ � = 0, on �Ω × (0, T),

�
Ω

|�−
�
|2(�) + 2�

�

0 �
Ω

k
(|∇�−

�
|2 + |∇�−

�
⋅ �

�
|2) ≤ 0.

(5.1)

⎧⎪⎨⎪⎩

𝜕t� + � ⋅ ∇� + ∇P = div(𝜇(𝜃)∇� − ∇�⊙ ∇�),

∇ ⋅ � = 0,

𝜕t� + � ⋅ ∇� = Δ� − � (�),

𝜕t𝜃 + � ⋅ ∇𝜃 = −div� + 𝜇(𝜃)�∇��2 + �Δ� − � (�)�2,

⎧⎪⎨⎪⎩

−Δ�i + ∇Pi = �i�i in Ω,

∇ ⋅ �i = 0 in Ω,

�i = 0 on �Ω,

(5.2)

⎧⎪⎨⎪⎩

𝜕t�m = ℙm

�
−�m ⋅ ∇�m + div

�
𝜇(𝜃m)∇�m − ∇�m ⊙ ∇�m

��
,

�m(⋅, t) ∈ �m, ∀t ∈ [0, T),

�m(x, 0) = ℙm(�0)(x), ∀x ∈ Ω,
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Since �m(⋅, t) ∈ �m , we can write

so that (5.2) becomes the following system of ODEs:

subject to the initial condition

for 1 ≤ i ≤ m , where

for 1 ≤ j, k ≤ m.
For T0 > 0 and M > 0 to be chosen later, suppose 

(
g(1)
m
,… , g(m)

m

)
∈ C1([0, T0]) and

Since �t�m,∇
2
�m ∈ C0(Ω × [0, T0]) , the standard theory of parabolic equa-

tions implies that there exists a strong solution �m to (5.3) such that for any 𝛿 > 0 , 
�t�m,∇

2
�m ∈ Lp(Ω × [�, T0]) for any 1 ≤ p < ∞ (see [11]). Next we can solve (5.4) 

to obtain a nonnegative, strong solution �m . In fact, observe that

(5.3)

⎧
⎪⎨⎪⎩

�t�m + �m ⋅ ∇�m = Δ�m − f (�m),

�m(x, 0) = �0(x) ∀x ∈ Ω,
��m

��
= 0 on �Ω,

(5.4)

⎧
⎪⎨⎪⎩

�t�m + �m ⋅ ∇�m = div
�
k(�m)∇�m + h(�m)(∇�m ⋅ �m)�m

�
+�(�m)�∇�m�2 + �Δ�m − � (�m)�2,

�m(x, 0) = �0(x) ∀x ∈ Ω,
��m

��
= 0 on �Ω.

�m(x, t) =

m∑
i=1

g(i)
m
(t)�i(x),

(5.5)
d

dt
g(i)
m
(t) = A

(i)

jk
g(j)
m
(t)g(k)

m
(t) + B

(i)

mj
(t)g(j)

m
(t) + C(i)

m
(t),

(5.6)g(i)
m
(0) = ∫

Ω

⟨�0,�i⟩,

A
(i)

jk
= −∫

Ω

⟨𝜑j ⋅ ∇𝜑k,𝜑i⟩,

B
(i)

mj
(t) = −∫

Ω

⟨𝜇(�m)∇𝜑j,∇𝜑i⟩,

C(i)
m
(t) = ∫

Ω

(∇�m ⊙ ∇�m) ∶ ∇𝜑i,

(5.7)sup
0≤t≤T0

m∑
i=1

|g(i)
m
(t)|2 ≤ M2.

k(�m)∇�m + h(�m)(∇�m ⋅ �m)�m = D(�m)∇�m,
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where (Dij(�m)) = (k(�m)�ij + h(�m)�
i
m
�
j
m) is uniformly elliptic, and 

�(�m)|∇�m|2 + |Δ�m − � (�m)|2 ∈ Lp(Ω × [�, T0]) holds for any 1 < p < ∞ and 
𝛿 > 0 . Thus by the standard theory of parabolic equations, we can first obtain a 
unique weak solution �m to (5.3) such that �m ∈ C�(Ω × [�, T0]) for some � ∈ (0, 1) . 
This yields that the coefficient matrix D(�m) ∈ C(Ω × [�, T0]) and hence by the reg-
ularity theory of parabolic equations we conclude that ∇�m ∈ Lp(Ω × [�, T0]) for any 
1 < p < ∞ and 𝛿 > 0 . Now we see that �m satisfies

where |D�
ij
(�m)| ≤ |h�(�m)| + |k�(�m)| is bounded, since h and k are Lipschitz continu-

ous. Hence by the W2,1
p

-theory of parabolic equations, �t�m,∇2
�m ∈ Lp(Ω × [�,T0]) 

for any 1 < p < ∞ and 𝛿 > 0.
To solve (5.5) and (5.6), we need some apriori estimates. Taking the L2 inner 

product of (5.3) with −Δ�m + � (�m) yields

It follows from (5.7) that

Therefore we get

This, combined with Gronwall’s inequality and F(�0) = 0 , implies

so that

Thus we can solve (5.5) and (5.6) to obtain a unique solution 
(g̃(1)

m
(t),… , g̃(m)

m
(t)) ∈ C1([0, T0]) such that for all t ∈ [0, T0]

�t�m − Dij(�m)
�
2
�m

�xi�xj
= D�

ij
(�m)

��m

�xi

��m

�xj
+ �(�m)|∇�m|2 + |Δ�m − � (�m)|2,

d

dt �Ω

|∇�m|2 + 2F(�m) = −2�
Ω

|Δ�m − � (�m)|2 + 2�
Ω

(�m ⋅ ∇�m) ⋅ (Δ�m − � (�m))

≤ −�
Ω

|Δ�m − � (�m)|2 + �
Ω

|�m ⋅ ∇�m|2, t ∈ [0, T0].

‖‖�m‖‖L∞(Ω×[0,T0])
≤ M ⋅ max

1≤i≤m
‖‖�i

‖‖L∞(Ω)
≤ CmM.

d

dt �Ω

(|∇�m|2 + 2F(�m)) + �
Ω

|Δ�m − � (�m)|2 ≤ C2
m
M2 �

Ω

|∇�m|2.

sup
0≤t≤T0 �Ω

(|∇�m|2 + F(�m)) + �
T0

0 �
Ω

|Δ�m − � (�m)|2 ≤ eC
2
m
M2T0 �

Ω

|∇�0|2,

sup
0≤t≤T0

max
1≤i,j≤m

(
|B(i)

mj
(t)| + |C(i)

m
(t)|

) ≤ C0(m,M).

(5.8)
m∑
i=1

|g̃(i)
m
(t)|2 ≤

m∑
i=1

|g(i)
m
(0)|2 + C(m,M,𝜇,𝜇, k, k)t2.
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Choose M = 2 + 2
∑m

i=1
�g(i)

m
(0)�2 and T0 > 0 so small that the right-hand side of 

(5.8) is less than M2 for all t ∈ [0, T0] . Set �̃m ∶ Ω × [0, T0] → ℝ
3 by

Then L(�m) = �̃m defines a map from �(T0) to �(T0) , where

Since �(T0) is a closed, convex subset of H1
0
(Ω) and L is a compact operator, it fol-

lows from the Leray–Schauder theorem that L has a fixed point �m ∈ �(T0) for the 
approximation system (5.2), and a classical solution �m to (5.3) and �m to (5.4) on 
Ω × [0, T0] , see [6].

Next, we will establish a priori estimates and show that the solution can be 
extended to [0, T]. To do it, taking the L2 inner product of (5.2) and (5.3) by �m 
and −Δ�m + � (�m) respectively, and adding together these two equations, we get 
that for t ∈ [0, T0],

where we use the identities

We can derive from (5.9) that

Lemma 4.1 implies that |�m| ≤ 1 and |� (�m)| ≤ 1 in Ω × [0, T0] , so that

Hence (5.10) yields thqat

�̃m(x, t) =

m∑
i=1

g̃(i)
m
(t)𝜑i(x).

�(T0) =

{
�m(x, t) =

m∑
i=1

g(i)
m
(t)�i(x) ∶ max

t∈[0,T0]

m∑
i=1

|g(i)
m
(t)|2 ≤ M2, �m(0) = ℙm�0

}
.

(5.9)

d

dt ∫Ω

(|�m|2 + |∇�m|2 + 2F(�m)) + 2∫
Ω

�(�m)|∇�m|2 + |Δ�m − � (�m)|2 = 0,

∫
Ω

�m ⋅ div(∇�m ⊙ ∇�m) = ∫
Ω

(�m ⋅ ∇�m) ⋅ Δ�m,

∫
Ω

(�m ⋅ ∇�m) ⋅ � (�m) = ∫
Ω

�m ⋅ ∇F(�m) = 0.

(5.10)

sup
0≤t≤T0 �Ω

(|�m|2 + |∇�m|2 + 2F(�m)) + 2�
T0

0 �
Ω

�(�m)|∇�m|2 + |Δ�m − � (�m)|2

≤ �
Ω

(|�0|2 + |∇�0|2).

�
T0

0 �
Ω

|Δ�m|2 ≤ 2�
T0

0 �
Ω

(1 + |Δ�m − � (�m)|2).
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While the integration of (5.4) over Ω yields

Adding (5.9) together with (5.12) and integrating over [0, T0] , we obtain

Next by choosing H(�) = (1 + �)� , � ∈ (0, 1) , and multiplying Eq. (5.4) by 
H�(�m) = �(1 + �m)

�−1 , we get

where �m = −h(�m)∇�m − k(�m)(∇�m ⋅ �m)�m.
Integrating (5.14) over Ω × [0, T0] yields

Notice that

Thus we obtain that

(5.11)
sup

0≤t≤T0 �Ω

(|�m|2 + |∇�m|2) + �
T0

0 �
Ω

(�|∇�m|2 + |Δ�m|2)

≤ �
Ω

(|�0|2 + |∇�0|2) + CT0|Ω|.

(5.12)
d

dt ∫Ω

�m = ∫
Ω

(�(�m)|∇�m|2 + |Δ�m − � (�m)|2).

(5.13)sup
0≤t≤T0 �Ω

(|�m|2 + |∇�m|2 + �m) ≤ �
Ω

(|�0|2 + |∇�0|2 + �0).

(5.14)

�t(1 + �m)
� + �m ⋅ ∇(1 + �m)

�

= −div
(
�(1 + �m)

�−1
�m

)
+ �(1 + �m)

�−1
(
�(�m)|∇�m|2 + |Δ�m − � (�m)|2

)

+ �(� − 1)(1 + �m)
�−2

�m ⋅ ∇�m,

(5.15)
�

T0

0 �
Ω

�(� − 1)(1 + �m)
�−2

�m ⋅ ∇�m ≤ �
Ω×{T0}

(1 + �m)
� − �

Ω

(1 + �0)
� .

�
T0

0 �
Ω

�(� − 1)(1 + �m)
�−2

�m ⋅ ∇�m

= �(1 − �)�
T0

0 �
Ω

(1 + �m)
�−2(k(�m)|∇�m|2 + h(�m)(∇�m ⋅ �m)

2)

≥ �(1 − �)k �
T0

0 �
Ω

(1 + �m)
�−2|∇�m|2

≥ 4�(1 − �)k

�2 �
T0

0 �
Ω

|∇�
�

2

m |2.
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With (5.13) and (5.16), we can apply an interpolation argument, similar to (4.13) in 
[7], to conclude that �m ∈ Lq(Ω × [0, T0]) for any 1 ≤ q <

5

3
 , and

This, together with (5.16) and Hölder’s inequality:

for � ∈ (0, 1) and 1 ≤ p < 2 , implies that

holds for all p ∈ [1, 5∕4).
Plugging the estimates (5.11), (5.13), (5.17), and (5.18) into the system (5.2), (5.3), 

and (5.4), we conclude that

Therefore, by setting 
(
�m(⋅, T0), �m(⋅, T0), �m(⋅, T0)

)
 as then initial data and repeating 

the same argument, we can extend the solution to the interval [0, 2T0] and eventually 
obtain a solution (�m, �m, �m) to the system (5.2), (5.3), (5.4) in [0, T] such that the 
estimates (5.11), (5.13), (5.17), (5.18), and (5.19) hold with T0 replaced by T.

The existence of a weak solution to the original system (5.1) will be obtained 
by passing to the limit of (�m, �m, �m) as m → ∞ . In fact, by Aubin–Lions’ com-
pactness lemma [23], we know that there exists � ∈ L∞

t
L2
x
∩ L2

t
H1

x
(Ω × [0,T]) , 

� ∈ L∞
t
H1

x
∩ L2

t
H2

x
(Ω × [0, T]) , and a nonnegative � ∈ L∞

t
L1
x
∩ L

p

t W
1,p
x (Ω × [0, T]) , 

for 1 < p <
5

4
 , such that, after passing to a subsequence,

(5.16)

�
T0

0 �
Ω

||||∇�
�

2

m

||||
2 ≤ C(�, k)�

Ω×{T0}

(1 + �m)
�

≤ C(�, k,Ω)

(
�
Ω×{T0}

(1 + �m)

)�

≤ C(�, k,Ω)

(
1 + �

Ω

(|�0|2 + |∇�0|2 + �0)

)�

.

(5.17)���m��Lq(Ω×[0,T]) ≤ C
�
q, k, ‖�0‖L2(Ω), ‖∇�0‖L2(Ω), ‖�0‖L1(Ω)

�
.

�
Ω×[0,T0]

|∇�m|p ≤
(
�
Ω×[0,T0]

|∇�m|2��−2m

) p

2
(
�
Ω×[0,T0]

�
(2−�)

p

2−p

m

) 2−p

2

,

(5.18)��∇�m��Lp(Ω×[0,T0]) ≤ C
�
p, k, ‖�0‖L2(Ω), ‖∇�0‖L2(Ω), ‖�0‖L1(Ω)

�

(5.19)

sup
m

{‖‖�t�m‖‖L 4
3 (0,T0;H

−1(Ω))
+ ‖‖�t�m‖‖L 4

3 (0,T0;L
2(Ω))

+ ‖‖�t�m‖‖L2(0,T0;W−1,4(Ω)

} ≤ C.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�m → � in L2(Ω × [0,T]),

(�m,∇�m) → (�,∇�) in L2(Ω × [0,T]),

𝜃m → 𝜃 a.e. and in Lp1 (Ω × [0, T]), ∀1 < p1 <
5

3
,

∇�m ⇀ ∇� in L2(Ω × [0,T]),

∇2
�m ⇀ ∇2

� in L2(Ω × [0,T]),

∇𝜃m ⇀ ∇𝜃 in Lp2 (Ω × [0, T]), ∀1 < p2 <
5

4
.
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Since � ∈ C([0,∞)) is bounded, we have that

and

After passing m → ∞ in Eqs. (5.2) and (5.3), we see that (�, �, �) satisfies Eqs. 
(5.1)1 , (5.1)2 , and (5.1)3 in the weak sense.

Next we want to verify that � satisfies

holds for any smooth, non-decreasing and concave function H, and 
� ∈ C∞

0
(Ω × [0, T)) with � ≥ 0 . Here � = −k(�)∇� − h(�)(∇� ⋅ �)�. Observe that 

by choosing H(t) = t , (5.20) yields that � solves (5.1)4 in the weak sense, namely,

In order to show (5.20), first observe that multiplying Eq. (5.4) by H�(�m)� , inte-
grating over Ω × [0, T] , and employing the regularity of �m, �m, �m implies

where �m = −k(�m)∇�m − h(�m)(∇�m ⋅ �m)�m.

It follows from Lemma 4.3 that �m ≥ ess infΩ�0 a.e.. Without loss of generality, 
we assume H(0) = 0 so that H(�m) ≥ H(ess infΩ�0) ≥ 0 since H is nondecreasing. 
From H′′ ≤ 0 , we conclude that 0 ≤ H�(�m) ≤ H�(ess infΩ�0) . From the concavity 
of H, we have

𝜇(𝜃m) → 𝜇(𝜃) in Lp(Ω × [0, T]), ∀1 ≤ p < ∞,

�(�m)∇�m ⇀ �(�)∇� in L2(Ω × [0, T]).

(5.20)

�
T

0 �
Ω

(
H(�)�t� + (H(�)� − H�(�)�) ⋅ ∇�

)

≤ −�
T

0 �
Ω

[
H�(�)(�(�)|∇�|2 + |Δ� − � (�)|2) − H��(�)� ⋅ ∇�

]
�

− �
Ω

H(�0)�(⋅, 0)

(5.21)

�
T

0 �
Ω

(
��t� + (�� − �) ⋅ ∇�

)

≤ −�
T

0 �
Ω

(�(�)|∇�|2 + |Δ� − � (�)|2)� − �
Ω

�0�(⋅, 0).

(5.22)

∫
T

0 ∫
Ω

(
H(�m)�t� + (H(�m)�m − H�(�m)�m) ⋅ ∇�

)

= −∫
T

0 ∫
Ω

[
H�(�m)(�(�m)|∇�m|2 + |Δ�m − � (�m)|2) − H��(�m)�m ⋅ ∇�m

]
�

− ∫
Ω

H(�0)�(⋅, 0),
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so that

This, combined with the bounds on �m, �m, �m and (5.22), implies that

is uniformly bounded. For any fixed l ∈ ℕ
+ , since

and

in Lp(Ω × [0, T] for 1 < p <
5

4
 , we have by the lower semicontinuity that

This, after sending l → ∞ , yields

 It follows from the lower semicontinuity again that

On the other hand, since

and

1

|Ω| �Ω

H(�m) ≤ H

(
1

|Ω| �Ω

�m

)

{H(𝜃m)} is bounded in L∞
t
L1
x
∩ L

p

t W
1,p
x

(Ω × [0, T]), ∀1 < p <
5

4
.

∫
T

0 ∫
Ω

H��(�m)�m ⋅ ∇�m�

= ∫
T

0 ∫
Ω

(�√−H��(�m)k(�m)�∇�m�2 + �√−H��(�m)h(�m)�(∇�m ⋅ �m)�2)

√
min{−H��(�m), l}k(�m)�∇�m ⇀

√
min{−H��(�), l}k(�)�∇�,

√
min{−H��(�m), l}h(�m)�(∇�m ⋅ �m) ⇀

√
min{−H��(�), l}h(�)�(∇� ⋅ �)

(5.23)

�
T

0 �
Ω

min{−H��(�), l}� ⋅ ∇�� ≤ lim inf
m→∞ �

T

0 �
Ω

min{−H��(�m), l}�m ⋅ ∇�m�

≤ lim inf
m→∞ �

T

0 �
Ω

−H��(�m)�m ⋅ ∇�m� .

(5.24)�
T

0 �
Ω

−H��(�)� ⋅ ∇�� ≤ lim inf
m→∞ �

T

0 �
Ω

−H��(�m)�m ⋅ ∇�m� .

(5.25)
�

T

0 �
Ω

[
H�(�)(�(�)|∇�|2 + |Δ� − � (�)|2)�

≤ lim inf
m→∞ �

T

0 �
Ω

[
H�(�m)(�(�m)|∇�m|2 + |Δ�m − � (�m)|2)� .

H(�m) → H(�), H(�m)�m → H(�)� in L1(Ω × [0,T]),
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we have

Therefore (5.20) follows by passing m → ∞ in (5.22) and applying (5.24), (5.25), 
and (5.26). This completes the construction of a global weak solution to (5.1). 	�  ◻

6 � Convergence and existence of global weak solutions of (1.5)

In this section, we will apply Lemma 4.1, Lemma 4.2, and Lemma 4.3 to analyze 
the convergence of a sequence of weak solutions (�

�
, �

�
, �

�
) to the Ginzburg–Lan-

dau approximate system (1.4) constructed in the previous section, as � → 0 , and 
obtain a global weak solution (�, �, �) to (1.5).

Here we will employ the pre-compactness theorem by Lin and Wang [21] on 
approximated harmonic maps to show that �

�
→ � in L2([0, T],H1(Ω)) as � → 0.

Proof of Theorem 3.1  Let (�
�
, �

�
, �

�
) be the weak solutions to the Ginzburg–Landau 

approximate system (1.4), under the boundary condition (3.2), (3.4), obtained from 
Section 5. Then there exist C1,C2 > 0 depending only on �0 , �0 , and �0 such that

and

Applying Eq. (1.4), we can further deduce that

H�(�m)�m ⇀ H�(�)� in L1(Ω × [0, T]),

(5.26)
∫

T

0 ∫
Ω

(
H(�)�t� + (H(�)� − H�(�)�) ⋅ ∇�

)

= lim
m→∞∫

T

0 ∫
Ω

(
H(�m)�t� + (H(�m)�m − H�(�m)�m) ⋅ ∇�

)
.

(6.1)

sup
�

�
‖�

�
‖L∞t L2

x
∩L2t H

1
x
(Ω×[0,T]) + ‖�

�
‖L∞t H1

x
(Ω×[0,T])

� ≤ C1,

sup
�

‖�
�
‖
L∞t L1

x
∩L

p
t W

1,p
x (Ω×[0,T])

≤ C2(p), ∀ p ∈ (1,
5

4
),

�
Ω×{t}

�
��

�
�2 + �∇�

�
�2 + 2

�2
F(�

�
)

�
+ 2�

t

0 �
Ω

�
�(�

�
)�∇�

�
�2 + �Δ�

�
−

1

�2
� (�

�
)�2

�

≤ �
Ω

(��0�2 + �∇�0�2), ∀t ∈ [0, T],

(6.2)
�
Ω×{t}

(|�
�
|2 + |∇�

�
|2 + 2

�2
F(�

�
) + �

�
) ≤ �

Ω

(|�0|2 + |∇�0|2 + �0), ∀t ∈ [0, T],

(6.3)|�
�
| ≤ 1, �3

�
≥ 0, �

�
≥ ess infΩ�0, in Ω × [0, T].



91

1 3

Weak solutions of non‑isothermal nematic liquid crystal flow…

Therefore, after passing to a subsequence, there exist � ∈ L
∞
t
L
2

x
∩ L

2

t
H

1

x
(Ω × [0,T]),

� ∈ L∞
t
H1

x
(Ω × [0, T]), � ∈ L∞

t
L1
x
∩ L

p

t W
1,p
x (Ω × [0, T]) for 1 < p <

5

4
 such that

as � → 0 . Since

we conclude that |�| = 1 a.e. in Ω × [0, T] . Sending � → 0 in equations (1.4)2,3 , we 
obtain that

and

which, combined with the fact that � is �2-valued, implies that

Hence (3.10) holds.
‘To verify that � satisfies Eq. (1.5)1 , we need to show that ∇�

�
 converges to ∇� 

in L2
loc
(Ω × (0,T)) . which makes sense of ∇ ⋅ (∇�⊙ ∇�) . We also need to justify the 

convergence of temperature equation (1.5)4 . For this purpose, we recall some basic 
notations and theorems in [21] that are needed in the proof.

For any 0 < a ≤ 2 , L1 and L2 > 0 , denote by X(L1, L2, a) the space that consists of 
weak solutions �

�
 of

such that 

(1)	 |�
�
| ≤ 1 and �3

�
≥ −1 + a for x a.e. in Ω,

(2)	 E
�
(�

�
) = ∫

Ω

1

2
|∇�

�
|2 + 3F

�
(�

�
)dx ≤ L1,

(3)	 ‖‖��‖‖L2(Ω) ≤ L2.

The following Theorem concerning the H1 pre-compactness of X(L1, L2, a) was 
shown by [21]. 	�  ◻

Theorem 6.1  For any a ∈ (0, 2] , L1 > 0 and L2 > 0 , the set X(L1, L2, a) is precom-
pact in H1

loc
(Ω;ℝ3). Namely, if 

{
�
�

}
 is a sequence of maps in X(L1, L2, a) , then there 

(6.4)

sup
𝜀

�
‖𝜕tu𝜀‖

L
4
3 ([0,T],H−1(Ω)

+ ‖𝜕t�𝜀‖
L

4
3 ([0,T],L2(Ω))

+ ‖𝜕t𝜃𝜀‖L2([0,T],W−1,4(Ω)

�
< C3.

(6.5)
{

(�
�
, �

�
) → (�, �) in L2(Ω × (0,T)),

(∇�
�
,∇�

�
) ⇀ (∇�,∇�) in L2(Ω × (0,T))

�
Ω×[0,T]

F(�) ≤ lim
� �

Ω×[0,T]

F(�
�
) = 0,

∇ ⋅ � = 0 a.e. in Ω × [0, T],

(�t� + � ⋅ ∇�) × � = ∇ ⋅ (∇� × �) weakly in Ω × [0, T],

(6.6)�t� + � ⋅ ∇� = Δ� + |∇�|2� weakly in Ω × [0, T].

Δ�
�
− �

�
(�

�
) = �

�
in Ω
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exists a map � ∈ H1(Ω;�2) such that, after passing to a possible subsequence, 
�
�
→ � in H1

loc
(Ω;ℝ3).

We also denote by Y(L1, L2, a) the space that consists of � ∈ H1(Ω,�2) that are 
so-called stationary approximated harmonic maps, more precisely,

for any � ∈ C∞
0
(Ω;ℝ3) , and 

(1)	 �
(3)(x) ≥ −1 + a for x a.e. in Ω,

(2)	 E(�) =
1

2
∫
Ω
|∇�|2dx ≤ L1,

(3)	 ‖�‖L2(Ω) ≤ L2.

The following H1 pre-compactness of stationary approximated harmonic maps 
was also shown by [21].

Theorem  6.2  For any a ∈ (0, 2] , L1 > 0 and L2 > 0 , the set Y(L1, L2, a) is pre-
compact in H1

loc
(Ω;�2) . Namely, if 

{
�i

}
⊂ Y(L1, L2, a) is a sequence of stationary 

approximated harmonic maps, with tensor fields 
{
�i

}
 , then there exist � ∈ L2(Ω,ℝ3) 

and a stationary approximated harmonic map � ∈ Y(L1, L2, a) , with tensor field � , 
namely,

such that after passing to a possible subsequence, �i → � in H1
loc
(Ω,�2) and �i ⇀ � 

in L2(Ω;ℝ3) . Moreover, � ∈ W
2,2

loc
(Ω,�2).

Now we sketch the proof the compactness of ∇�
�
 in L2

loc
(Ω × [0,T]) . It follows 

from Fatou’s lemma and (6.1) that

We decompose [0, T] into the sets of “good time slices” and “bad time slices”. For 
Λ ≫ 1 , set

and

From Chebyshev’s inequality, we have

(6.7)
�

Δ� + �∇��2� = 𝜏 in Ω,

∫
Ω
(∇�⊙ ∇�) ∶ ∇𝜑 −

1

2
�∇��2∇ ⋅ 𝜑 + ⟨𝜏,𝜑 ⋅ ∇�⟩ = 0,

Δ� + |∇�|2� = � in Ω,

�
T

0

lim inf
�→0 �

Ω

|Δ�
�
− �

�
(�

�
)|2 ≤ C0.

GT
Λ
∶=

{
t ∈ [0, T] ∶ lim inf

�→0 �
Ω

|Δ�
�
− f

�
(�

�
)|2(t) ≤ Λ

}
,

BT
Λ
∶= [0, T]⧵GT

Λ
=

{
t ∈ [0, T] ∶ lim inf

𝜀→0 ∫
Ω

|Δ�
𝜀
− �

𝜀
(�

𝜀
)|(t) > Λ

}
.
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For any t ∈ G
T
Λ
 , set �

�
(t) =

(
Δ�

�
− �

�
(�

�
)
)
(t). Then Lemmas 4.1 and 4.2 imply that {

�
𝜀
(t)
}
⊂ X(C0,Λ, 1) . Theorem 6.1 then implies that

For any � ∈ C∞
0
(Ω;ℝ3) , multiplying �

�
(t) by � ⋅ ∇�

�
 and integrating over Ω yields

Passing limit � → 0 in (6.9), we get

Hence �(t) ∈ Y(C0,Λ, 1) is a stationary approximated harmonic map. Next we want 
to show that �

�
→ � strongly in L2

t
H1

x
 . To see this, we claim that for any compact 

K ⊂⊂ Ω,

For, otherwise, there exist 𝛿0 > 0 , K ⊂⊂ Ω and �i → 0 such that

From (6.5), we have

By Fubini’s theorem, (6.11) and (6.12), there would exist ti ∈ G
T
Λ
 such that

Thus 
{
�
𝜀i
(ti)

}
⊂ X(C0,Λ, 1) and 

{
�(ti)

}
⊂ Y(C0,Λ, 1) . It follows from Theorems 

6.1 and 6.2 that there exist �1, �2 ∈ Y(C0,Λ, 1) such that

Therefore we would have

(6.8)|BT
Λ
| ≤ C0

Λ
.

⎧
⎪⎨⎪⎩

�
�
(t) → �(t) in H1

loc
(Ω),

F
�
(�

�
) → 0 in L1

loc
(Ω),

�
�
(t) ⇀ �(t) in L2(Ω).

(6.9)
∫
Ω

(∇�
𝜀
(t)⊙ ∇�

𝜀
(t)) ∶ ∇𝜑 −

�
1

2
�∇�

𝜀
(t)�2 + F

𝜀
(�

𝜀
(t))

�
∇ ⋅ 𝜑 + ⟨𝜏

𝜀
(t),𝜑 ⋅ ∇�

𝜀
(t)⟩ = 0.

∫
Ω

(∇�(t)⊙ ∇�(t)) ∶ ∇𝜑 −
1

2
�∇�(t)�2∇ ⋅ 𝜑 + ⟨𝜏(t),𝜑 ⋅ ∇�(t)⟩ = 0.

(6.10)lim
�→0∫K×GT

Λ

|∇(�
�
− �)|2 = 0.

(6.11)�K×GT
Λ

|∇(�
�i
− �)|2 ≥ �0.

(6.12)lim
�i→0∫K×GT

Λ

|�
�i
− �|2 = 0.

{
lim

�i→0 ∫K |�
�i
(ti) − �(ti)|2 = 0,

∫
K
|∇(�

�i
(ti) − �(ti))|2 ≥ 2�0

T
.

�
�i
(ti) → �1 and �(ti) → �2 strongly in H1(Ω).



94	 H. Du et al.

1 3

and

This is clearly impossible. Thus the claim is true.
We can also follow the proof of Theorem 6.1 in [21] to conclude that the small 

energy regularity criteria holds for every (x, t) ∈ K × G
T
Λ
 so that a finite covering 

argument, together with estimates for Claim 4.5 in [21], yields

Hence we have that

On the other hand, it follows from (6.1) and (6.8) that

Therefore, we would arrive at

Sending Λ → ∞ yields that

Therefore we can conclude that � solves the equation (3.9), provided we can verify 
that �(�

�
)∇�

�
⇀ �(�)∇� weakly in L2(Ω × [0, T]) , which will be verified below.

Next we turn to the convergence of �
�
 . For � ∈ (0, 1) , set H(�

�
) = (1 + �

�
)� . Then 

from (5.14) we have

�K

|∇(�1 − �2)|2 = lim
i→∞�K

|∇(�
�
(ti) − �(ti)

)|2 ≥ 2�0

T
,

∫K

|�1 − �2|2 = lim
i→∞∫K

|�
�i
(ti) − �(ti)|2 = 0.

(6.13)lim
�→0∫K×GT

Λ

F
�
(�

�
) = 0.

lim
�→0

�
‖�

�
− �‖2

L2t H
1
x
(K×GT

Λ
)
+ ∫K×GT

Λ

F
�
(�

�
)

�
= 0.

‖‖�𝜀 − �‖‖2L2t H1
x
(Ω×BT

Λ
)
+ �

Ω×BT
Λ

F
𝜀
(�

𝜀
)

≤ C

(
sup
t>0 �Ω

(|�
𝜀
|2 + |∇�

𝜀
|2 + F

𝜀
(�

𝜀
))

)|||B
T
Λ

||| ≤ C

Λ
.

lim
�→0

[
‖‖�� − �‖‖2L2t H1

x
(K×[0,T])

+ �K×[0,T]

F
�
(�

�
)

]
≤ C

Λ
.

lim
�→0

[
‖‖�� − �‖‖2L2t H1

x
(K×[0,T])

+ ∫K×[0,T]

F
�
(�

�
)

]
= 0.

(6.14)

�t(1 + �
�
)� + �

�
⋅ ∇(1 + �

�
)�

≥ −div
(
�(1 + �

�
)�−1�

�

)
+ �(1 + �

�
)�−1

(
�(�

�
)|∇�

�
|2 + |Δ�

�
− �

�
(�

�
)|2)

+ �(� − 1)(1 + �
�
)�−2�

�
⋅ ∇�

�
.
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Integrating (6.14) over Ω × [0, T] , by the assumption (3.1) on � , and the bound (6.1) 
on �

�
, �

�
 and �

�
 , we can derive that

Therefore we conclude that �
�

2

� ∈ L2
t
H1

x
 and �

�
∈ L∞

t
L1
x
 are uniformly bounded. By 

interpolation, we would have that for 1 ≤ p < 5∕4,

From Eq. (5.1)4 , we have that for 1 ≤ q <
30

23
,

Hence, by Aubin–Lions’ compactness Lemma [23] again, up to a subsequence, there 
exists � ∈ L∞

t
L1
x
∩ L

p

t W
1,p
x  for 1 ≤ p <

5

4
 such that

as � → 0.
After taking another subsequence, we may assume that (�

�
, �

�
, �

�
) converge to 

(�, �, �) a.e. in Ω × [0, T].

Since {�(�
�
)} is uniformly bounded in L∞(Ω × [0, T]) , �(�

�
) → �(�) a.e. in 

Ω × [0, T] and ∇�
�
⇀ ∇� in L2(Ω × [0, T]) , it follows that

Thus we verify that (3.9) holds.
Taking the L2 inner product of �

�
 , �

�
 , �

�
 in (5.1) with respect to 

�
�
,−Δ�

�
+ �

�
(�

�
), 1 , and adding the resulting equations together, we have the fol-

lowing energy law:

Taking � → 0 , this implies that |�| = 1 and

sup
𝜀>0

sup
0<t<T ∫Ω

(1 + 𝜃
𝜀
)𝛼−2|∇𝜃

𝜀
|2 < ∞.

sup
𝜀>0

‖‖𝜃𝜀‖‖Lpt W1,p
x (Ω×[0,T])

< ∞.

sup
𝜀>0

��𝜕t𝜃𝜀��L1t W−1,q
x

≤ sup
𝜀>0

�
C‖�

𝜀
𝜃
𝜀
‖Lqt Lqx + C‖∇𝜃

𝜀
‖Lqt Lqx

+C
����∇�𝜀�

2 + �Δ�
𝜀
− �

𝜀
(�

𝜀
)�2���L1t L1x

�

≤ C sup
𝜀>0

�
���𝜀��

L
10
3
t L

10
3
x

��𝜃𝜀��
L

10q
10−3q
t L

10q
10−3q
x

+ ��∇𝜃𝜀��Lqt Lqx
�
+ C

< ∞.

{
�
�
→ � in Lp(Ω × (0,T)),

∇�
�
⇀ ∇� in Lp(Ω × (0,T)),

�(�
�
)∇�

�
⇀ �(�)∇� in L2(Ω × [0, T]).

(6.15)
d

dt ∫Ω

(
1

2
|�

�
|2 + 1

2
|∇�

�
|2 + F

�
(�

�
) + �

�

)
= 0.

�
Ω

(
1

2
|�|2 + 1

2
|∇�|2 + �

)
(t) ≤ �

Ω

(
1

2
|�0|2 + 1

2
|∇�0| + �0

)
, ∀0 ≤ t ≤ T .
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Hence the global energy inequality (3.12) holds.
It remains to show that (3.8) follows by passing limit � → 0 in (3.7). This can be 

done exactly as in the last part of the previous section. For any smooth, nondecreas-
ing, concave function H, and � ∈ C∞

0
(Ω × [0, T)) , recall from (5.20) that

Assume H(0) = 0 . Then the concavity of H, 0 ≤ H�(�
�
) ≤ H�(ess infΩ�0) , and the 

uniform bound on �
�
 imply that

Together with the bounds on �
�
, �

�
 , and (6.16), we have that

is uniformly bounded. By an argument similar to (5.24), we can show that

Observe that

and 
{
H�(�

�
)
}
 is uniformly bounded in L∞(Ω × [0, T]) . It follows from the lower 

semicontinuity that

On the other hand, since

and

(6.16)

�
T

0 �
Ω

(
H(�

�
)�t� + (H(�

�
)�

�
− H�(�

�
)�

�
) ⋅ ∇�

)

≤ −�
T

0 �
Ω

[H�(�
�
)(�(�

�
)|∇u

�
|2 + |Δ�

�
− �

�
(�

�
)|2) − H��(�

�
)�

�
⋅ ∇�

�
]�

− �
Ω

H(�0)�(⋅, 0).

{H(𝜃
𝜀
)} is bounded in L∞

t
L1
x
∩ L

p

t W
1,p
x

(Ω × [0, T]), ∀1 < p <
5

4
.

∫
T

0 ∫
Ω

H��(�
�
)�

�
⋅ ∇�

�
�

= ∫
T

0 ∫
Ω

(�√−H��(�
�
)k(�

�
)�∇�

�
�2 + �√−H��(�

�
)h(�m)�(∇�� ⋅ ��)�2)

(6.17)�
T

0 �
Ω

−H��(�)� ⋅ ∇�� ≤ lim inf
�→0 �

T

0 �
Ω

−H��(�
�
)�

�
⋅ ∇�

�
� .

Δ�
�
− �

�
(�

�
) = �t�� + �

�
⋅ ∇�

�
⇀ �t� + � ⋅ ∇� = Δ� + |Δ�|2� in L2(Ω × [0, T]),

(6.18)
�

T

0 �
Ω

[
H�(�)(�(�)|∇�|2 + |Δ� + |∇�|2�|2)�

≤ lim inf
�→0 �

T

0 �
Ω

[
H�(�

�
)(�(�

�
)|∇�

�
|2 + |Δ�

�
− �

�
(�

�
)|2)� .

H(�
�
) → H(�), H(�

�
)�

�
→ H(�)� in L1(Ω × [0, T]),
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we have

Therefore (3.11) follows by passing � → 0 in (6.16) and applying (6.17), (6.18), and 
(6.19). This completes the construction of a global weak solution to (1.5). 	�  ◻
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