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Abstract
For any bounded smooth domain � ⊂ R

2, we will establish the convergence of weak solu-
tions of the Ginzburg-Landau approximation of the simplified Ericksen-Leslie system to a
weak solution of the simplified Ericksen-Leslie system associated with either uniaxial or
biaxial nematics, as the Ginzburg-Landau parameter tends to zero. We will also show the
compactness property of weak solutions to the simplified Ericksen-Leslie system associated
with either uniaxial or biaxial nematics. These results follow from the compensated compact-
ness property of the Ericksen stress tensors, which are obtained by the Pohozaev argument
for the Ginzburg-Landau approximation of the simplified Ericksen-Leslie system and the
L p-estimate (1 ≤ p < 2) of the Hopf differential for the simplified Ericksen-Leslie system
respectively.

1 Introduction

Let � ⊂ R
2 be a bounded domain with smooth boundary, and N ⊂ R

L (for L ≥ 2)
be a smooth compact Riemannian manifold without boundary, and 0 < T ≤ ∞. We will
formulate a simplified Ericksen-Leslie systemmodeling the hydrodynamics of nematic liquid
crystals with the orientational director field taking values in N :

⎧
⎪⎨

⎪⎩

ut + u · ∇u − �u + ∇P = −∇ · (∇v � ∇v
)
,

∇ · u = 0,

vt + u · ∇v = �v + A(v)(∇v,∇v),

in QT ≡ � × (0, T ), (1.1)

where (u(x, t), v(x, t), P(x, t)) : QT → R
2 × N × R represents the fluid velocity field,

the orientational director field of the nematic liquid crystal material valued in N , and the
pressure function respectively,

(∇v � ∇v
)

i j = ∇xi v · ∇x j v for i, j = 1, 2 represents the

Ericksen-Leslie stress tensor, and A(y)(·, ·) is the second fundamental form of N in R
L at
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the point y ∈ N . We remark that the formulation of the third equation of (1.1) arises from
the fact that the angular momentum balance law for v obeys the constraint v(�) ⊂ N , which
holds for any spatial dimension of �.

This simplified Ericksen-Leslie system (1.1) into N covers and unifies two important
cases in the hydrodynamics of nematic liquid crystals:

(1) If N = S
2, then the system (1.1) reduces to the simplified Ericksen-Leslie system for

uniaxial nematics proposed by [4, 15], and [17]
⎧
⎪⎨

⎪⎩

∂t u + u · ∇u − �u + ∇P = −∇ · (∇v � ∇v
)
,

∇ · u = 0,

∂tv + u · ∇v = �v + |∇v|2v,

in QT , (1.2)

for (u(x, t), v(x, t), P(x, t)) : QT → R
2 × S

2 × R. In dimension two, the existence
of a unique global weak solution of (1.2), under an initial and boundary condition, has
been proved in [22, 25], which satisfies the energy inequality and has at most finitely
many singular times, see also [9, 10], and [32]. Very recently, the authors in [14] have
constructed an example of finite time singularity. In dimension three, a global weak
solution has been constructed in [24] when the initial data v0 ∈ S

2+. Examples of finite
time singularity have been constructed by [11]. The reader can consult the survey article
[23] and the references therein.

(2) If

N = {
(y1, y2) ∈ S

2 × S
2

∣
∣ y1 · y2 = 0

} ⊂ R
6,

and if we set v(x, t) = (n(x, t),m(x, t)) : QT → S
2×S

2, with n ·m = 0, then the system
(1.1) becomes the following simplified Ericksen-Leslie system for biaxial nematics:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u + u · ∇u − �u + ∇P = −∇ · (∇n � ∇n + ∇m � ∇m
)
,

∇ · u = 0,

∂t n + u · ∇n = �n + |∇n|2n + 〈∇n,∇m〉m,

∂tm + u · ∇m = �m + |∇m|2m + 〈∇m,∇n〉n,

n · m = 0,

in QT . (1.3)

This is a simplified version of the hydrodynamics of biaxial nematics model proposed
by E. Grovers and G. Vertogen [6–8] which is based on the Landau-De Gennes Q-tensor
theory for nematic liquid crystals [2]. In dimensional two, by extending the techniques
developed in [25] the existence of a unique global weak solution to (1.3) has recently
been shown in [16], which is smooth off at most finitely many singular times.

A natural approach to construct a weak solution of (1.1), subject to the initial-boundary
condition (1.5), is to consider the Ginzburg-Landau approximate system of (1.1) (cf. [18]
and [19]). More precisely, for any δ > 0 set the δ-neighborhood of N by

Nδ =
{
y ∈ R

L
∣
∣ dist(y,N ) < δ

}
,

where dist(y,N ) denotes the distance function of y to N . Let �N : Nδ → N denote the
nearest point projection map. It is well-known that there exists an δN = δ(N ) > 0 such
that both dist(y,N ) and �N (y) are smooth for y ∈ N2δN . Let χ(s) ∈ C∞([0,∞)) be a
monotone increasing function such that

χ(s) =
{
s, if 0 ≤ s ≤ δ2N ,

4δ2N , if s ≥ 4δ2N .
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Consider the following Ginzburg-Landau energy functional for the director field v : � →
R

L :

Eε(v) =
∫

�

(1

2
|∇v|2 + 1

ε2
χ

(
dist2(v,N )

))
.

Then the corresponding Ginzburg-Landau approximate system of (1.1) can be written as
⎧
⎪⎪⎨

⎪⎪⎩

ut + u · ∇u − �u + ∇P = −∇ · (∇v � ∇v
)
,

∇ · u = 0,

vt + u · ∇v = �v − 1

ε2
χ ′( dist2(v,N )

) d

dv

(
dist2(v,N )

)
,

in QT . (1.4)

We would like to remark that due to the difficulty in showing the weak convergence of
the Ericksen stress tensors of vε to that of a weak limit v, it has been a challenging question
to ask if a weak limit (u, v) of (uε, vε) solves the original Ericksen-Leslie system (1.1). See
for example [18].

Themain purpose of this paper is to establish in dimension two: (i) the convergence ofweak
solutions of the Ginzburg-Landau approximate system (1.4) to the simplified Ericksen-Leslie
system (1.1), and (ii) the weak compactness of weak solutions to the simplified Ericksen-
Leslie system (1.1).

To simplify the presentation, wewill consider the following initial and boundary condition

(u, v)|∂pQT = (u0, v0) (1.5)

where ∂pQT = (
� × {t = 0}) ∪ (

∂� × [0, T ]) denotes the parabolic boundary of QT . We
will assume that (u0, v0) : � → R

2 × R
L satisfies

u0
∣
∣
∂�

= 0, v0(x) ∈ N for a.e. x ∈ �. (1.6)

We now introduce the following notations

H = Closure of C∞
0

(
�,R2) ∩

{
f

∣
∣ ∇ · f = 0

}
in L2 (

�,R2) ,

J = Closure of C∞
0

(
�,R2) ∩

{
f

∣
∣ ∇ · f = 0

}
in H1

0

(
�,R2) ,

H1(�,N ) =
{
f ∈ H1(�,RL )

∣
∣ f (x) ∈ N a.e. x ∈ �

}
.

We will assume that
u0 ∈ H, v0 ∈ H1(�,N ). (1.7)

Recall the definition of weak solutions of (1.1).

Definition 1.1 Assume (1.6) and (1.7). For T > 0, a pair of maps u ∈ L∞([0, T ],H) ∩
L2([0, T ], J) and v ∈ L2([0, T ], H1(�,N )) is called a weak solution to the initial and
boundary problem (1.1) and (1.5), if

−
∫

QT

〈
u, ξ ′ϕ

〉 +
∫

QT

〈u · ∇u, ξϕ〉 + 〈∇u, ξ∇ϕ〉

= −ξ(0)
∫

�

〈u0, ϕ〉 +
∫

QT

〈∇v � ∇v, ξ∇ϕ〉 ,

−
∫

QT

〈
v, ξ ′φ

〉 +
∫

QT

〈u∇v, ξφ〉 + 〈∇v, ξ∇φ〉

= −ξ(0)
∫

�

〈v0, φ〉 +
∫

QT

〈A(v)(∇v,∇v), ξφ〉 ,

(1.8)
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for any ξ ∈ C∞([0, T ])with ξ(T ) = 0,ϕ ∈ J andφ ∈ H1
0 (�,RL )∩L∞(�,RL ).Moreover,

(u, v)|∂� = (u0, v0) holds in the sense of traces. Similarly, the notion of a weak solution
to the system (1.4) and (1.5) can be defined for u ∈ L∞([0, T ],H) ∩ L2([0, T ], J) and
v ∈ L2([0, T ], H1(�,RL )).

Our first main theorem concerns the convergence of weak solutions of the system (1.4) to
the system (1.1), as ε → 0.Wewould like to remark that for any ε > 0, the existence of weak
solutions to (1.4) has been established by [18, 19] forN = S

2 ⊂ R
3 by the Galerkin method,

which can be extended without much difficulty to the case that N is a compact Riemannian
manifold.

Theorem 1.2 Under the assumptions (1.6) and (1.7), for ε > 0 let (uε, vε) be a sequence of
weak solutions to the Ginzburg-Landau approximated system (1.4) subject to the initial and
boundary condition (1.5). Then there exists a weak solution (u, v) of (1.1), subject to the
initial and boundary condition (1.5) such that, after passing to a subsequence,

uε⇀u in L2([0, T ], H1(�)), vε⇀v in L2([0, T ], H1(�)).

In particular, the initial and boundary problem (1.1) and (1.5) admits at least one weak
solution u ∈ L∞([0, T ],H) ∩ L2([0, T ], J) and v ∈ L2([0, T ], H1(�,N )).

We would like to mention that whenN = S
2, the convergence of weak solutions (uε, vε)

of the system (1.4) to a weak solution (u, v) of the system (1.2) has recently been proved in
two dimensional torus T 2 by Kortum in an interesting article [12]. In order to deal with the
most difficult terms ∇vε � ∇vε in the limit process, Kortum employed the concentration-
cancellation method for the Euler equation developed by DiPerna and Majda [3] (see also
[26]). Thanks to the rotational covariance of ∇vε � ∇vε , the test functions can be taken
to periodic functions of one spatial variable to verify the convergence ∇ · (∇vε � ∇vε) to
∇ · (∇v � ∇v) in the dual space of C∞

0,div(�,R2). The paper [12] left it open whether the

Ericksen stress tensors (∇vε�∇vε− 1
2 |∇vε|2I2)weakly converges to (∇v�∇v− 1

2 |∇v|2I2)
as Radon measures.

In this paper, we make some new observations on the Ericksen stress tensor ∇vε � ∇vε,
that is flexible enough to treat any smooth domain � ⊂ R

2. More precisely, by adding
− 1

2 |∇vε|2I2 to ∇vε � ∇vε, where I2 is the 2 × 2 identity matrix, we have

∇vε � ∇vε − 1

2
|∇vε|2I2 = 1

2

( |∂xvε|2 − |∂yvε|2, 2〈∂xvε, ∂yv
ε〉

2〈∂xvε, ∂yv
ε〉, |∂yvε|2 − |∂xvε|2

)

.

This is a 2× 2 matrix-valued function whose components consist of the Hopf differential of
map vε, which are |∂xvε|2 − |∂yvε|2 and 〈∂xvε, ∂yv

ε〉. Since vε is either an approximated
harmonic map to N or an Ginzburg-Landau approximated harmonic map to N , we can
develop the compensated compactness property of theEricksen stress tensors by thePohozaev
argument (see, for example, Schoen [27] or Lin–Wang [20]).

As a byproduct of the proof of Theorem 1.2, we obtain the following compactness for a
sequence of weak solutions to the system (1.1).

Theorem 1.3 Let (uk, vk) : QT → R
2 × N be a sequence of weak solutions to (1.1), along

with the initial and boundary condition (uk0, v
k
0) satisfying (1.6), such that

sup
k≥1

{∫

QT

(|uk |2 + |∇vk |2) +
∫

QT

(|∇uk |2 + |vkt + uk · ∇vk |2)
}

< ∞, (1.9)
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and if, in addition, we assume

(uk0, v
k
0)⇀(u0, v0) in L2(�,R2) × H1(�,S2),

then there exists a weak solution (u, v) of (1.1) with the initial and boundary condition
(u0, v0) such that, after passing to subsequences,

uk⇀u in L2([0, T ], H1(�)), vk⇀v in L2([0, T ], H1(�)).

Since the system (1.1) possesses the geometric structure, i.e.,

A(vk)(·, ·) ⊥ TvkN
where TvkN is the tangent space of N at vk , we observe that for a.e. t ∈ (0, T ), vk(·, t) :
� → N can be regarded as an approximated harmonic map with L2-tension field τk ≡
(vkt + uk · ∇vk)(·, t). Hence we can show the weak convergence of (|∂xvk |2 − |∂yvk |2) to
(|∂xv|2 −|∂yv|2) and 〈∂xvk, ∂yvk〉 to 〈∂xv, ∂yv〉 in L1 by utilizing the L p-estimate, 1 < p <

2, of the Hopf differential of vk(·, t).
The paper is organized as follows. In section two, we will prove some uniform estimates

on vε under a smallness condition on the Ginzburg-Landau energy. In section three, we
will establish the weak compactness of the Ericksen stress tensors of vε by the Pohozaev
argument and prove Theorem 1.2. In section four, we will prove Theorem 1.3 by establishing
the L p-estimates, 1 < p < 2, of the Hopf differential of vk .

2 Uniform estimates of inhomogeneous Ginzburg-Landau equations

In this section, we will establish uniform estimates on vε under the smallness condition on
the Ginzburg-Landau energy. More precisely, we will consider a family of solutions vε to
the inhomogeneous Ginzburg-Landau equation:

�vε − 1

ε2
χ ′( dist2(vε,N )

) d

dv

(
dist2(vε,N )

) = τε in �. (2.1)

We will assume that there exist 0 < �1,�2 < ∞ such that

sup
0<ε≤1

Eε(v
ε) =

∫

�

(
1

2
|∇vε|2 + 1

ε2
χ(dist2(vε,N ))

)

≤ �1 < ∞, (2.2)

and
sup

0<ε≤1

∥
∥τ ε

∥
∥
L2(�)

≤ �2 < ∞. (2.3)

After passing to a subsequence, we may assume that there exist v ∈ H1(�,N ) and τ ∈
L2(�,RL ) such that

τ ε⇀τ in L2(�), vε⇀v in H1(�).

Then we have

Lemma 2.1 There exists δ0 > 0 such that if vε ∈ H1(�,RL ) is a family of solutions to (2.1)
satisfying (2.2) and (2.3), and if for x0 ∈ � and 0 < r0 < dist(x0, ∂�),

sup
0<ε≤1

∫

Br0 (x0)

(1

2
|∇vε|2 + 1

ε2
χ

(
dist2(vε,N )

)) ≤ δ20, (2.4)
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then there exists an approximated harmonic map v ∈ H1(Br0
4
(x0),N ) with tension filed τ ,

i.e,
�v + A(v)(∇v,∇v) = τ, (2.5)

such that as ε → 0,

vε → v in H1(Br0
4
(x0)), and

1

ε2
χ

(
dist2(vε,N )

) → 0 in L1(Br0
4
(x0)). (2.6)

Proof For any fixed x1 ∈ Br0
2
(x0) and 0 < ε ≤ r0

2 , define v̂ε(x) = vε(x1 + εx) : B1(0) →
R

L . Then we have

�v̂ε = χ ′(dist2 (̂vε,N ))
d

dv
(dist2 (̂vε,N )) + τ̂ ε in B1(0),

where τ̂ ε(x) = ε2τ ε(x1 + εx). Since

∥
∥�v̂ε

∥
∥
L2(B1(0))

≤ ∥
∥χ ′( dist (̂vε,N ))

d

dv
( dist 2 (̂vε,N ))

∥
∥
L2(B1(0))

+ ∥
∥τ̂ ε

∥
∥
L2(B1(0))

≤ C
( ∫

�∩{ dist (vε,N )≤2δN }
dist 2(vε,N )

) 1
2 + ε

∥
∥τ ε

∥
∥
L2(�)

≤ C + �2.

Thus v̂ε ∈ H2(B 1
2
) and ‖̂vε‖H2(B 1

2
) ≤ C(1+�2). Hence by the Sobolev embedding theorem

we have that v̂ε ∈ C
1
2 (B 1

2
) and

[̂vε]
C

1
2 (B 1

2
)
≤ C

∥
∥v̂ε

∥
∥
H2(B 1

2
)
≤ C(1 + �2).

By rescaling, we get

|vε(x) − vε(y)| ≤ C(1 + �2)
( |x − y|

ε

) 1
2
, ∀x, y ∈ Bε(x1).

We claim that dist(vε,N ) ≤ δN on Br0
2
(x0). Suppose it were false. Then there exists

x1 ∈ Br0
2
(x0) such that dist(vε(x1),N ) > δN . Then for any θ0 ∈ (0, 1) and x ∈ Bθ0ε(x1),

it holds

|vε(x) − vε(x1)| ≤ C
( |x − x1|

ε

) 1
2 ≤ Cθ

1
2
0 ≤ 1

2
δN ,

provided θ0 ≤ δ2N
4C2 . It follows that

dist(vε(x),N ) ≥ 1

2
δN , ∀x ∈ Bθ0ε(x1),

so that ∫

Bθ0ε(x1)

1

ε2
χ(dist2(vε,N )) ≥ πδ2N θ20 .

This contradicts the assumption that
∫

Bθ0ε(x1)

1

ε2
χ(dist2(vε,N )) ≤

∫

Br1 (0)

(1

2
|∇vε|2 + 1

ε2
χ

(
dist2(vε,N )

) )
≤ δ20,

provided we choose a sufficiently small δ0 > 0.
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From dist(vε,N ) ≤ δN in Br0
2
(x0), we may decompose vε into

vε = �N (vε) + dist(vε,N )ν
(
�N (vε)

) := ωε + dενε,

where ωε = �N (vε), dε = dist(vε,N ), νε = ν(�N (vε)), and

ν(�N (y)) = y − �N (y)
|y − �N (y)| , y ∈ NδN \ N ,

denotes a unit normal vector of N at the point �N (y).
Thus the equation of vε can be rewritten as

�ωε + �dενε + 2∇dε∇νε + dε�νε − 1

ε2
χ ′(d2ε )∇vεd

2
ε = τε. (2.7)

Multiplying (2.7) by νε , we get

�dε = 〈∇ωε,∇νε〉 + dε|∇νε|2 + 2

ε2
χ ′(d2ε )dε + τ⊥

ε , (2.8)

where τ⊥
ε = 〈τε, νε〉. Plugging �dε into (2.7), we obtain

�ωε + 〈∇ωε,∇νε〉νε + dε

(
�νε + |∇νε|2νε

) + 2〈∇νε,∇dε〉 = τ ′′
ε , (2.9)

where τ
′′
ε = τε − τ⊥

ε νε . Here we have used the identities:

〈∇vεd
2
ε , νε〉 = 2dε, 〈∇vεd

2
ε , νε〉νε = ∇vεd

2
ε .

Let η ∈ C∞
0 (Br0

2
(x0),R) be a standard cutoff function of B 3r0

8
(x0). Since dist(vε,N ) ≤

δN on Br0(x0), it follows that dε = dist(vε,N ) ≤ δN on Br0(x0), i.e. ‖dε‖L∞(Br0 (x0)) ≤ δN ,

so that χ ′(d2ε ) = 1 and hence

(

−� + 2

ε2

)

(dεη
2) = − dε�(η2) − 2∇dε∇(η2) + 〈∇ωε,∇(νεη

2)〉 − 〈∇ωε, νε∇(η2)〉
+ dε

(|∇(νεη
2)|2 − |νε∇(η2)|2) + τ⊥

ε η2.

(2.10)
For sufficiently small ε > 0, by applying the W 2, 43 -estimate for (−� + 2

ε2
) uniformly in ε

(see [13]), we obtain that

‖∇2(dεη
2)‖

L
4
3

� ‖dε�(η2)‖
L

4
3

+ ‖∇dε∇(η2)‖
L

4
3

+ ‖∇ωε‖L2‖∇(νεη
2)‖L4

+ ‖∇ωε‖L2 + ‖dε‖L∞‖∇νε‖L2‖∇(νεη
2)‖L4 + ‖τ⊥

ε ‖
L

4
3

� ‖dε‖L∞ + ‖∇dε‖L2 + ‖∇ωε‖L2(‖∇(νεη
2)‖L4 + 1)

+ ‖dε‖L∞‖∇νε‖L2‖∇(νεη
2)‖L4 + ‖τε‖L2 ,

(2.11)

where A � B stands for A ≤ CB for some universal positive constant C .
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For ωε, by a similar calculation we obtain

�(ωεη
2) = − 〈∇ωε,∇(νεη

2)〉νε + 〈∇ωε, νε∇(η2)〉νε

− dε

[
�(νεη

2) − νε�(η2) − 2∇νε∇(η2)
] + dε

[|∇νεη
2|2 − |νε∇(η2)|2]νε

− 2
[〈∇(νεη

2),∇dε〉 − 〈∇(η2),∇dε〉νε

] + τ ′′
ε η2 + ωε�(η2) + 2∇ωε∇(η2).

(2.12)
Applying the W 2, 43 -estimate, we obtain

‖∇2(ωεη
2)‖

L
4
3

� ‖∇ωε‖L2‖∇(νεη
2)‖L4 + ‖∇ωε‖

L
4
3

+ ‖dε‖L∞‖�(νεη
2)‖

L
4
3

+ ‖dε‖L∞
(
1 + ‖∇νε‖

L
4
3

)
+ ‖dε‖L∞‖∇(νεη

2)‖L2‖∇(νεη
2)‖L4

+ ‖∇dε‖L2‖∇(νεη
2)‖L4 + ‖∇dε‖

L
4
3

+ ‖τε‖L2 .

(2.13)

Therefore, we conclude that

‖∇2(dεη
2)‖

L
4
3

+ ‖∇2(ωεη
2)‖

L
4
3

� ‖∇vε‖L2‖∇(νεη
2)‖L4 + ‖dε‖L∞‖∇2(νεη

2)‖
L

4
3

+ ‖∇vε‖L2 + ‖τε‖L2 .
(2.14)

Since

vεη2 = ωεη
2 + dενεη

2

we have

‖∇2(vεη2)‖
L

4
3

� ‖∇2(dενεη
2)‖

L
4
3

+ ‖∇2(ωεη
2)‖

L
4
3

� ‖dε‖L∞‖∇2(νεη
2)‖

L
4
3

+ ‖∇dε‖L2‖∇(νεη
2)‖L4 + ‖∇2dεη

2‖
L

4
3

+ ‖∇2(ωεη
2)‖

L
4
3

� ‖dε‖L∞‖∇2(νεη
2)‖

L
4
3

+ ‖∇dε‖L2‖∇(νεη
2)‖L4 + ‖∇2(dεη

2)‖
L

4
3

+ ‖∇dε‖L2 + ‖∇2(wεη
2)‖

L
4
3

+ 1.

(2.15)
Therefore, we have

‖∇2(vεη2)‖
L

4
3

� ‖dε‖L∞‖∇2(νεη
2)‖

L
4
3

+ ‖∇vε‖L2
[
1 + ‖∇(vεη2)‖L4 + ‖∇(νεη

2)‖L4
] + ‖τε‖L2 + 1

� ‖dε‖L∞‖∇2(νεη
2)‖

L
4
3

+ ‖∇vε‖L2
[
1 + ‖∇(vεη2)‖L4

] + ‖τε‖L2 + 1.

(2.16)
Since νε = νε(v

ε), we can directly calculate and show that

‖∇2(νεη
2)‖

L
4
3

� ‖∇2(vεη2)‖
L

4
3

+ ‖∇vε‖L2
[
1 + ‖∇(vεη2)‖L4

] + 1. (2.17)
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Therefore, we can conclude that

(1 − C‖dε‖L∞) ‖∇2(vεη2)‖
L

4
3

� ‖∇vε‖L2
[
1 + ‖∇(vεη2)‖L4

] + ‖τε‖L2 + 1. (2.18)

Since ‖dε‖L∞ ≤ δN , we have that

1 − C‖dε‖L∞ ≥ 1 − CδN ≥ 1

2
,

provided δN is chosen sufficiently small. From this and Sobolev’s embedding, (2.18) implies

‖∇(vεη2)‖L4 � ‖∇vε‖L2
[
1 + ‖∇(vεη2)‖L4

] + ‖τε‖L2 + 1. (2.19)

Taking δ0 small enough in the assumption (2.4), we conclude that

‖∇(vεη2)‖L4 � ‖∇vε‖L2 + ‖τε‖L2 + 1 ≤ C(δ0,�2). (2.20)

Substituting this into (2.19), we obtain that

‖∇2(vεη
2)‖

L
4
3

≤ C(δ0,�2). (2.21)

Hence vε → v in H1(Br0
3
(x0)).

By Fubini’s theorem, there exists r1 ∈ [ r04 , r0
3 ] such that

∫

∂Br1 (x0)
|∇dε|2 ≤ C

∫

B r0
3

(x0)
|∇dε|2 ≤ C,

∫

∂Br1 (x0)
|dε|2 ≤ C

∫

B r0
3

(x0)
|dε|2 ≤ Cε2.

(2.22)
Multiplying the equation of dε by dε and integrating by parts over Br1 , we obtain
∫

Br1 (x0)

(|∇dε|2+ 2

ε2
χ ′(dε)d

2
ε +|∇νε|2d2ε +∇ωε∇νε ·dε

)−
∫

∂Br1 (x0)

∂dε

∂ν
dε =

∫

Br1 (x0)
τ⊥
ε dε.

(2.23)
Then we have

∫

Br1 (x0)

(|∇dε|2 + 2

ε2
d2ε

)

≤ C
(
∫

∂Br1 (x0)
|∇dε|2

) 1
2
(
∫

∂Br1 (x0)
|dε|2

) 1
2 + C

(
∫

Br1 (x0)
|∇ωε|4

) 1
2
(
∫

Br1 (x0)
|dε|4

) 1
2

+ C
(
∫

Br1 (x0)
|τε|2

) 1
2
(
∫

Br1 (x0)
|dε|2

) 1
2 ≤ Cε.

(2.24)
Therefore we have that

d2ε
ε2

→ 0 in L1(Br1(x0)). (2.25)

This completes the proof.

Now we define the concentration set by

� :=
⋂

r>0

{
x ∈ � : lim inf

k→∞

∫

Br (x)

(1

2
|∇vε|2 + 1

ε2
χ

(
dist2(vε,N )

))
> δ20

}
, (2.26)

where δ0 > 0 is given in Lemma 2.1. We have

123



H. Du et al.

Lemma 2.2 � is a finite set, and

vε → v in H1
loc(� \ �). (2.27)

The finiteness of � follows from the condition (2.2) and a simple covering argument, see
also [24] and [12].

3 Convergence of Ginzburg-Landau approximate solutions

The section is devoted to the proof of Theorem 1.2, which is based on a priori estimates from
section 2 and the compensated compactness property of the Ericksen stress tensors.

First, it follows from the global energy inequality of (1.4) that for almost every t ∈ (0, T ),
∫

�×{t}
(|uε|2 + |∇vε|2 + 1

ε2
χ

(
dist2(vε,N )

)) + 2
∫

Qt

(|∇uε|2 + ∣
∣vε

t + uε · ∇vε
∣
∣2

) ≤ E0.

(3.1)
Here E0 = ∫

�
(|u0|2 + |∇v0|2). This, combined with the system (1.4), implies that there

exists 1 < p < 2 such that

sup
ε>0

[∥
∥uε

t

∥
∥
L2
t W

−2,p
div

+ ∥
∥vε

t

∥
∥
L4/3
t L4/3

x

]
< ∞, (3.2)

where W−2,p
x,div stands for the dual of W 2,p′

div (�) = {g ∈ W 2,p′
0 (�,R2) : ∇ · g = 0} with

p′ = p/(p − 1). To see (3.2), first observe from (3.1) that for 1 < p < 2,

−uε · ∇uε + �uε − ∇ · (∇vε � ∇vε) ∈ L2
t W

−2,p
x ,

and
∥
∥ − uε · ∇uε + �uε − ∇ · (∇vε � ∇vε)

∥
∥
L2
t W

−2,p
x

≤ C
(
‖uε ⊗ uε‖L2

t L1
x
+ ‖uε‖L2

t L2
x
+ ‖∇vε � ∇vε‖L2

t L1
x

)

≤ C
[
(1 + ‖uε‖L∞

t L2
x
)‖uε‖L∞

t L2
x
+ ‖∇vε‖2L∞

t L2
x

] ≤ C .

Then we can estimate

∥
∥uε

t (·, t)
∥
∥
W−2,p

x,div
= sup

{〈uε
t (·, t), g〉 : ‖g‖

W 2,p′
div

≤ 1
}

= sup
{〈−uε ·∇uε+�uε−∇·(∇vε � ∇vε), g〉 : g ∈ W 2,p′

div (�), ‖g‖
W 2,p′

0
≤1

}

≤ sup
{〈−uε ·∇uε+�uε − ∇·(∇vε�∇vε), g〉 : g∈W 2,p′

0 (�), ‖g‖
W 2,p′

0
≤1

}

= ∥
∥ − uε · ∇uε + �uε − ∇ · (∇vε � ∇vε)

∥
∥
W−2,p

x
≤ C .

To estimate vε
t , observe that v

ε
t = (vε

t +uε ·∇vε)−uε ·∇vε ∈ L2
t L

2
x+L4

t L
4
x×L2

t L
2
x ⊂ L

4
3
t L

4
3
x ,

and
∥
∥vε

t

∥
∥
L

4
3
t L

4
3
x

≤ ∥
∥vε

t + uε · ∇vε
∥
∥
L2
t L2

x
+ ∥

∥uε
∥
∥
L4
t L4

x

∥
∥∇vε

∥
∥
L2
t L2

x
≤ C,

where we have applied (3.1) and the fact that L∞
t L2

x ∩ L2
t H

1
x ⊂ L4

t L
4
x .
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Hence by Aubin-Lions’ Lemma there exist u ∈ L∞
t L2

x ∩ L2
t H

1
x (QT ,R2) and v ∈

L∞
t H1

x (QT ,N ) such that after taking a subsequence,

(uε, vε) → (u, v) in L2(QT ), (∇uε,∇vε)⇀(∇u,∇v) in L2(QT ).

This, combined this with (3.1), also implies that

vε
t + uε · ∇vε⇀vt + u · ∇v in L2(QT ). (3.3)

Furthermore, it follows from (3.2) that (uε, vε) is bounded in Cw([0, T ],W−2,p(�) ×
L

4
3 (�)). This, together with the boundedness of (uε, vε) ∈ L∞

t L2
x (QT ) × L∞

t H1
x (�T ),

enables us to apply [30] Lemma 6 to conclude that (uε, vε) is bounded inCw([0, T ], L2(�)×
H1(�)). Thus, after taking a possible subsequence, we can assume that

(
uε(t), vε(t)

)
⇀(u(t), v(t)) in L2(�) × H1(�), (3.4)

for all t ∈ [0, T ].
By the lower semi-continuity, we have that for all t ∈ (0, T ),

∫

�×{t}
(|u|2 + |∇v|2) +

∫

Qt

(|∇u|2 + |vt + u · ∇v|2)

≤ lim inf
ε→0

(
∫

�×{t}
(|uε|2 + |∇vε|2) +

∫

Qt

(|∇uε|2 + |vε
t + uε · ∇vε|2))

≤ E0.

(3.5)

By Fatou’s Lemma, we also have that for all t ∈ (0, T ),
∫ t

0
lim inf

ε→0

∫

�

(|∇uε|2+|vε
t +uε · ∇vε|2) ≤ lim inf

ε→0

∫ t

0

∫

�

(|∇uε|2 + |vε
t + uε ·∇vε|2)≤E0.

(3.6)
Hence there exists A ⊂ [0, T ], with Lebesgue measure |A| = T , such that for any t ∈ A,

lim inf
ε→0+

∫

�

(|∇uε|2 + |vε
t + uε · ∇vε|2) (t) < ∞. (3.7)

Now we define the concentration set at t ∈ A by

�t :=
⋂

r>0

{
x ∈ � : lim inf

ε→0

∫

Br (x)×{t}
(1

2
|∇vε|2 + 1

ε2
χ

(
dist2(vε,N )

))
> δ20

}
, (3.8)

where δ0 is given by Lemma 2.1. By Lemma 2.2, it holds that #(�t ) ≤ C(E0), and

vε(t) → v(t) in H1
loc(� \ �(t)).

Now we would like to show that v is a weak solution of (1.1)3 by utilizing the geometric
structure as in [1] (see also [21]). First notice that there exists a unit vector νε

N ⊥ T�N (vε)N
such that

d

dv
χ

(
dist2(vε,N )

) = 2χ ′(dist2(vε,N )) dist(vε,N )νε
N .

Next, since �N : NδN → N is the nearest point projection map, it follows from the differ-
ential geometry (c.f. [29]) that for any y ∈ N , the differential map D�N (y) ≡ Dy�N (y) :
R

L → TyN is an orthogonal projection map, and D2�N (y) is the second fundamental form
of N at y ∈ N , i.e.,

D2�N (y)(w1, w2) = −AN (y)(w1, w2), ∀w1, w2 ∈ TyN .
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In particular,

〈D�N (�N (vε))(v),
d

dv
χ

(
dist2(vε,N )

)〉 = 0

holds everywhere in � for any vector v ∈ R
L . Thus for any t ∈ A and φ ∈ C∞

0 (�\�t ,R
L ),

it holds
∫

�×{t}
〈vε

t + uε · ∇vε − �vε, D�N (�N (vε))φ〉

= − 1

ε2

∫

�×{t}
〈 d

dv
χ

(
dist2(vε,N )

)
, D�N (�N (vε))φ〉 = 0. (3.9)

From Lemma 2.2, we have that ∇vε → ∇v in L2
loc(� \ �t ). This implies that

∫

�×{t}
〈−�vε, D�N (�N (vε))φ〉 =

∫

�×{t}
〈∇vε,∇(

D�N (�N (vε))φ
)〉

→
∫

�×{t}
〈∇v,∇(

D�N (�N (v))φ
)〉 =

∫

�×{t}
〈∇v,∇(

D�N (v)φ
)〉

=
∫

�×{t}
(〈∇v,∇φ〉 − AN (v)(∇v,∇v)φ), (3.10)

as ε → 0. Here we have used the fact that

D�N (�N (vε))φ → D�N (�N (v))φ = D�N (v)φ,

in H1
loc(� \ �t ), as ε → 0, where �N (v) = v follows from v(�) ⊂ N . And in the last step

we have used ∇(
D�N (v)φ

) = D2�N (v)∇vφ + D�N (v)∇φ, which implies
∫

�×{t}
〈∇v,∇(

D�N (v)φ
)〉 =

∫

�×{t}
〈∇v, D2�N (v)∇vφ + D�N (v)∇φ〉

=
∫

�×{t}
〈∇v,∇φ〉 − AN (v)(∇v,∇v)φ,

where we have also used ∂iv ∈ TvN implying 〈∇v, D�N (v)∇φ〉 = 〈∇v,∇φ〉.
From (3.7), we may assume that there exists τ(t) ∈ L2(�,RL ) such that

(vε
t + uε · ∇vε)(t)⇀τ(t) (3.11)

in L2(�) as ε → 0. Substituting this convergence and (3.10) into (3.9), we obtain
∫

�×{t}
〈τ(·, t), D�N (v)φ〉 =

∫

�×{t}
〈∇v,∇φ〉 − AN (v)(∇v,∇v)φ (3.12)

for any t ∈ A and φ ∈ C∞
0 (� \ �t ,R

L). This implies that v(t) is a weak solution of the
equation of approximated harmonic maps, with tension field τ(t), in � \ �t :

�v(t) + AN (v(t))(∇v(t),∇v(t)) = τ(t).

Since τ(t) ∈ L2(�,RL ), it follows from the W 2,2-regularity of approximated harmonic
maps in dimension two (see [31] and [28]) that v(t) ∈ W 2,2

loc (� \ �t ,N ). Hence �v(t) +
AN (v(t))(∇v(t),∇v(t)) ∈ Tv(t)N holds a.e. in � \ �t , which implies that τ(t) ∈ Tv(t)N
holds a.e. in � \ �t .
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Since �t ⊂ R
2 is a finite set, the 2-capacity of �t is zero (see [5]). Hence there exist a

sequence {ηk}∞k=1 ⊂ C∞
0 (�) such that for all k ∈ N, 0 ≤ ηk ≤ 1, �t ⊂ int{ηk = 1}, and

lim
k→∞

∫

�

(|ηk |2 + |∇ηk |2) dx = 0.

Now for any test function ψ ∈ C∞
0 (�,RL), set φk = ψ(1 − ηk). Then φk ∈ C∞

0 (� \
�t ,R

L ). Applying (3.12) with φ replaced by φk , we obtain
∫

�×{t}
〈τ(·, t), D�N (v)ψ(1 − ηk)〉 =

∫

�×{t}
〈∇v, (1 − ηk)∇ψ − ψ∇ηk〉

−AN (v)(∇v,∇v)ψ(1 − ηk).

It is readily seen that after sending k → ∞, it holds
∫

�×{t}
〈τ(·, t), D�N (v)ψ(1 − ηk)〉 →

∫

�×{t}
〈τ(·, t), D�N (v)ψ〉,

∫

�×{t}
〈∇v, (1 − ηk)∇ψ〉 →

∫

�×{t}
〈∇v,∇ψ〉,

∫

�×{t}
AN (v)(∇v,∇v)ψ(1 − ηk) →

∫

�×{t}
AN (v)(∇v,∇v)ψ,

and

|
∫

�

〈∇v,ψ∇ηk〉| ≤ C
(
∫

�

|∇v|2) 1
2
(
∫

�

|∇ηk |2
) 1
2 → 0.

With these estimates we obtain
∫

�×{t}
〈τ(·, t), D�N (v)ψ〉 =

∫

�×{t}
〈∇v,∇ψ〉 − AN (v)(∇v,∇v)ψ (3.13)

for any t ∈ A and ψ ∈ C∞
0 (�,RL ).

On other hand, by comparing (3.3) with (3.11), we see that for a.e. t ∈ A,

τ(·, t) = (vt + u · ∇v)(·, t).
Since τ(·, t) ∈ Tv(·,t)N holds a.e. in �, we have that

∫

�

〈τ(t), D�N (v)φ〉 =
∫

�

〈τ(t), φ〉 =
∫

�

〈vt + u · ∇v, φ〉.

This, combined with (3.13), implies that

vt + u · ∇v − �v = AN (v)(∇v,∇v) (3.14)

holds weakly in � for a.e. t ∈ A. Hence (1.1)3 holds.
Next we proceed to verify the difficult part, that is, u solves (1.1)1. First by the estimate

(3.2), we have

uε
t ⇀ut , in L2([0, T ], H−1) ∩ L2([0, T ],W−2,p)

for some 1 < p < 2. For any ξ ∈ C∞([0, T ]) with ξ(T ) = 0, ϕ ∈ J, since
∫

QT

uε
t ξϕ = −

∫

�

u0ξ(0)ϕ −
∫

QT

uεξ ′ϕ,
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this, after taking ε → 0, implies that

∫

QT

utξϕ = −
∫

�

u0ξ(0)ϕ −
∫

QT

uξ ′ϕ.

By the definition of A, it is readily seen that for any t ∈ A, it holds

0 =
∫

�×{t}
〈
∂t u

ε, ϕ
〉+

∫

�×{t}
〈
uε · ∇uε, ϕ

〉+
∫

�×{t}
〈∇uε,∇ϕ

〉+
∫

�×{t}
(∇vε �∇vε) : ∇ϕ,

(3.15)
for any ϕ ∈ J.

Now we need to show the following crucial claim.
Claim: For any t ∈ A, it holds that for any ϕ ∈ J,

∫

�×{t}
〈
∂t u

ε, ϕ
〉 +

∫

�×{t}
〈
uε · ∇uε, ϕ

〉 +
∫

�×{t}
〈∇uε,∇ϕ

〉 +
∫

�×{t}
(∇vε � ∇vε) : ∇ϕ

→
∫

�×{t}
〈ut , ϕ〉 +

∫

�×{t}
〈u · ∇u, ϕ〉 +

∫

�×{t}
〈∇u,∇ϕ〉 +

∫

�×{t}
(∇v � ∇v) : ∇ϕ,

(3.16)
as ε → 0.

Observe by (3.7) that for any t ∈ A, ∇uε(·, t)⇀∇u(·, t) in L2(�). Thus the convergence
of the first three terms follows immediately.

The crucial step of this claim is to show the weak convergence of Ericksen stress tensors
of vε to that of v, i.e.,

lim
ε→0

∫

�×{t}
(∇vε � ∇vε) : ∇ϕ =

∫

�×{t}
(∇v � ∇v) : ∇ϕ, ∀ϕ ∈ J. (3.17)

For simplicity, we may assume �t = {(0, 0)} ⊂ � consists of a single point at zero. Let
ϕ ∈ C∞

0 (�,R2) be such that divφ = 0 and (0, 0) ∈ supp(ϕ), the support of ϕ. Observe that

∫

�×{t}
(∇vε � ∇vε) : ∇ϕ =

∫

�×{t}
(∇vε � ∇vε − 1

2
|∇vε|2I2

) : ∇ϕ.

Also by direct computations we observe that

∇vε � ∇vε − 1

2
|∇vε|2I2 = 1

2

( |∂xvε|2 − |∂yvε|2, 2〈∂xvε, ∂yv
ε〉

2〈∂xvε, ∂yv
ε〉, |∂yvε|2 − |∂xvε|2

)

(3.18)

is a 2 × 2-matrix valued function whose entries consist of the Hopf differential of vε. It
follows from (3.4) and (2.27) of Lemma 2.2 that there are two real numbers α, β such that

(|∂xvε|2 − |∂yvε|2)dx⇀(|∂xv|2 − |∂yv|2)dx + αδ(0,0), (3.19)

and 〈
∂xv

ε, ∂yv
ε
〉
dx⇀

〈
∂xv, ∂yv

〉
dx + βδ(0,0), (3.20)

as convergence of Radon measures.
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The above claim will follow if we can show a stronger property, namely the weak conver-
gence of the Ericksen stress tensors in (3.19) and (3.20):

α = β = 0. (3.21)

Recall that

�vε − 1

ε2
χ ′ (dist2(vε,N )

) d

dv

(
dist2(vε,N )

) = fε := ∂tv
ε + uε · ∇vε, (3.22)

where the tension filed fε is uniformly bounded in L2(�). Denote the Ginzburg-Landau
energy density by

eε(v
ε) = 1

2
|∇vε|2 + 1

ε2
χ

(
dist2(vε,N )

)
.

Next we want to derive the Pohozaev identity for vε . For any X ∈ C∞
0 (�,R2), by

multiplying the equation (3.22) by X · ∇vε and integrating over Br (0) we get
∫

∂Br (0)
(X jvε

j ) · (
vε
i
xi

|x|
) −

∫

Br (0)
X j
i v

ε
j · vε

i +
∫

Br (0)
divXeε(v

ε) −
∫

∂Br (0)
eε(v

ε)(X · x
|x| )

=
∫

Br (0)
(X · ∇vε) · fε. (3.23)

If we choose X(x) = x, then it holds that

r
∫

∂Br (0)

∣
∣
∣
∣
∂vε

∂r

∣
∣
∣
∣

2

+
∫

Br (0)

2

ε2
χ(dist2(vε,N )) − r

∫

∂Br (0)
eε(v

ε) =
∫

Br (0)
|x|∂vε

∂r
· fε,
(3.24)

and hence
∫

∂Br (0)
eε(v

ε) =
∫

∂Br (0)

∣
∣
∣
∣
∂vε

∂r

∣
∣
∣
∣

2

+ 1

r

∫

Br (0)

2

ε2
χ(dist2(vε,N )) + O

(
∫

Br (0)
|∇vε||fε|).

(3.25)
This, after integrating from r to R, yields that

∫

BR(0)\Br (0)
eε(v

ε) =
∫

BR(0)\Br (0)

∣
∣
∣
∣
∂vε

∂r

∣
∣
∣
∣

2

+
∫ R

r

1

τ

∫

Bτ (0)

2

ε2
χ(dist2(vε,N ))dτ

+
∫ R

r
O

(
∫

Bτ (0)
|∇vε||fε|)dτ.

(3.26)

Since �t = {(0, 0)}, we can assume that there exists γ ≥ 0 such that

eε(v
ε)dx⇀

1

2
|∇v|2dx + γ δ(0,0) in Bδ(0), (3.27)

as convergence of Radon measures. For t ∈ A, we have that

lim
ε→0

∫

Bτ (0)
|fε||∇vε| ≤ lim

ε→0

(
∫

Bτ (0)
|fε|2) 1

2
(
∫

Bτ (0)
|∇vε|2) 1

2 ≤ CE0.

Hence, after sending ε → 0, we obtain from (3.26) that
∫

BR(0)\Br (0)
1

2
|∇v|2≥

∫

BR(0)\Br (0)

∣
∣
∣
∣
∂v

∂r

∣
∣
∣
∣

2

+
∫ R

r

1

τ
lim
ε→0

∫

Bτ (0)

2

ε2
χ(dist2(vε,N ))dτ +O(R).
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Sending r → 0, this further implies that
∫

BR(0)

1

2
|∇v|2 ≥

∫

BR(0)

∣
∣
∣
∣
∂v

∂r

∣
∣
∣
∣

2

+
∫ R

0

1

τ
lim
ε→0

∫

Bτ (0)

2

ε2
χ(dist2(vε,N ))dτ + O(R).

From this, we must have that

2

ε2
χ(dist2(vε,N )) → 0 in L1(Bδ). (3.28)

For, otherwise, we would have that

2

ε2
χ(dist2(vε,N )) dx⇀κδ(0,0)

for some κ > 0 so that
∫ R

0

1

τ
lim
ε→0

∫

Bτ (0)

2

ε2
χ(dist2(vε,N )) =

∫ R

0

κ

τ
dτ = ∞.

This is impossible.
Next, by choosing X(x) = (x, 0) in (3.23) we obtain that

1

2

∫

Br (0)

(∣
∣∂yv

ε
∣
∣2 − ∣

∣∂xv
ε
∣
∣2

)
+

∫

Br (0)

1

ε2
χ(dist2(vε,N ))

=
∫

Br (0)
x〈∂xvε, fε〉 +

∫

∂Br (0)

x2

r
eε(v

ε) −
∫

∂Br (0)
x〈∂xvε,

∂vε

∂r
〉. (3.29)

Observe that by Fubini’s theorem, for a.e. r > 0 it holds that
∫

∂Br (0)
x〈∂xvε,

∂vε

∂r
〉 →

∫

∂Br (0)
x〈∂xv,

∂v

∂r
〉,

∫

∂Br (0)

x2

r
eε(v

ε) → 1

2

∫

∂Br (0)

x2

r
|∇v|2,

and by (3.28), ∫

Br (0)

1

ε2
χ(dist2(vε,N )) → 0.

Furthermore,
∣
∣
∫

Br (0)
x〈∂xvε, fε〉∣∣ ≤ Cr

∥
∥fε

∥
∥
L2

∥
∥∇vε

∥
∥
L2 = O(r).

Hence, by sending ε → 0 in (3.29), we obtain that
∫

Br (0)

(∣
∣∂yv

∣
∣2 − ∣

∣∂xv
∣
∣2

) + α = O(r).

This implies that α = 0, after sending r → 0.
Similarly, if we choose X(x) = (0, x) in (3.23) and pass the limit in the resulting equation,

we can get that ∫

Br (0)

〈
∂xv, ∂yv

〉 + β = O(r).

This can imply that β = 0 after sending r → 0. This proves (3.21) and (3.18). Hence the
Claim holds.

Finally, by multiplying (3.16) by ξ ∈ C∞([0, T ]) with ξ(T ) = 0 and integrating over
[0, T ], we conclude that u satisfies the (1.1)1 on QT . The proof of Theorem 1.2 is complete.
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4 Compactness of weak solutions to the simplified Ericksen-Leslie
system

This section is devoted to the proof of Theorem 1.3. A key ingredient is the L p-estimate,
1 < p < 2, for the Hopf differential of vk .

Since (uk, vk) satisfies the assumption (1.9), and

(uk0, v
k
0)⇀(u0, v0) in L2(�) × H1(�),

there exists (u(x, t), v(x, t)) : QT → R
2 × N such that

(uk, vk)⇀(u, v) in L2([0, T ], H1(�)), (4.1)

vkt + uk · ∇vk⇀vt + u · ∇v in L2([0, T ], L2(�)). (4.2)

Also it follows from the standard estimates on the system (1.1) and (1.9), similar to the
discussion we have in the previous section, that there exists 1 < q < 2 such that

sup
k

[∥
∥ukt

∥
∥
L2
t W

−2,q
x

+ ∥
∥vkt

∥
∥
L

4
3
t L

4
3
x

]
< ∞. (4.3)

Hence, by the Aubin-Lions Lemma we may assume that

(uk, vk) → (u, v) in L2(QT ) × L2(QT ),

and

(uk(·, t), vk(·, t))⇀(u(·, t), v(·, t)) in L2(�)

for all t ∈ [0, T ].
By the lower semi-continuity, we have

∫

Qt

(|∇u|2 + |vt + u · ∇v|2) ≤ lim inf
k→∞

∫

Qt

(
|∇uk |2 + |vkt + uk · ∇vk |2

)
≤ C0.

By Fatou’s Lemma and (1.9), we have
∫ t

0
lim inf
k→∞

∫

�

(
|∇uk |2+|vkt +uk ·∇vk |2

)
≤ lim inf

k→∞

∫

Qt

(
|∇uk |2 + |vkt + uk · ∇vk |2

)
≤ C0.

Hence, there exists A ⊂ [0, T ] with full Lebesgue measure T such that for all t ∈ A

lim inf
k→∞

∫

�

(
|∇uk |2 + |vkt + uk · ∇vk |2

)
(t) < ∞. (4.4)

Now we define the concentration set at time t ∈ A by letting

�t :=
⋂

r>0

{
x ∈ � : lim inf

k→∞

∫

Br (x)
|∇vk |2 > δ20

}
, (4.5)

where δ0 is the same constant as in Theorem 1.2 in [28]. As in [28] (see also [24, 31]), we
can show that for any t ∈ A, it holds that #(�t ) ≤ C(E0) and

vk(t) → v in H1
loc(� \ �t ). (4.6)
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Similar to the proof of Theorem 1.2, we can show the weak limit (u, v) satisfies the third
equation of (1.1) in the weak sense. The most difficult part is to show that the first equation
of (1.1) also holds in the weak sense. As in the proof of Theorem 1.2, in order to complete
the proof of Theorem 1.3, it is suffices to show the following convergence of Ericksen stress
tensors:

lim
k→∞

∫

�×{t}

(
∇vk � ∇vk

)
: ∇ϕ =

∫

�×{t}
(∇v � ∇v) : ∇ϕ, ∀ϕ ∈ J. (4.7)

For simplicity, assume �t = {(0, 0)} ⊂ �. Let ϕ ∈ C∞(�,R2) be such that div ϕ = 0 and
(0, 0) ∈ spt(ϕ). By the same calculation as in (3.18), we have

∇vε � ∇vε − 1

2
|∇vε|2I2 = 1

2

( |∂xvε|2 − |∂yvε|2, 2〈∂xvε, ∂yv
ε〉

2〈∂xvε, ∂yv
ε〉, |∂yvε|2 − |∂xvε|2

)

.

For any t ∈ A, note that vk(t) is an approximated harmonic maps from � to N :

�vk + A(vk)(∇vk,∇vk) = gk(t) := vkt (t) + uk · ∇vk(t) ∈ L2(�). (4.8)

By higher order Sobolev regularity of approximated harmonic maps with L2-tension fields
in dimension two, see [28] and [31], we have vk ∈ W 2,2(�,N ).

Recall the Hopf differential of vk is defined by

Hk = (∂vk

∂z

)2 = ∣
∣∂xv

k
∣
∣2 − ∣

∣∂yv
k
∣
∣2 + 2i

〈
∂xv

k, ∂yv
k 〉, (4.9)

where z = x + iy ∈ C. Since vk ∈ W 2,2(�,N ), direct calculations give

∂Hk

∂ z̄
= 2

∂vk

∂z

∂2vk

∂ z̄∂z
= 2�vk

∂vk

∂z
= 2gk(t)

∂vk

∂z
:= Gk . (4.10)

It is clear that

‖Gk‖L1(Br ) ≤ 2‖gk(t)‖L2(�)

∥
∥∂vk

∂z

∥
∥
L2(�)

≤ 2C0. (4.11)

Therefore, for any z ∈ Br (0) we have that

Hk(z) =
∫

∂B2r (0)

Hk(ω)

z − ω
dσ +

∫

B2r (0)

Gk(ω)

z − ω
dω. (4.12)

By the Young inequality of convolutions, we obtain that

‖Hk‖L p(Br ) ≤ C(r , p)‖Hk‖L1(∂B2r ) + ∥
∥1

z

∥
∥
L p‖Gk‖L1(B2r ) ≤ C(r , p) (4.13)

holds for any 1 < p < 2. From this and the convergence ∇vk → ∇v in L2
loc(� \ �t ,N ),

we immediately conclude that

|∂xvk |2 − |∂yvk |2⇀|∂xv|2 − |∂yv|2, 〈∂xvk, ∂yvk〉⇀〈∂xv, ∂yv〉 in L p(Br (0))

holds for any 1 < p < 2, which implies the L1-weak convergence of Ericksen stress tensors
of vk to that of v. In particular, (4.7) holds true. This completes the proof of Theorem 1.3.
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