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Abstract

In this paper, we establish the global existence of a suitable weak solution to the
co-rotational Beris–Edwards Q-tensor system modeling the hydrodynamic motion
of nematic liquid crystals with either Landau–De Gennes bulk potential in R

3 or
Ball–Majumdar bulk potential in T3, a system coupling the forced incompressible
Navier–Stokes equation with a dissipative, parabolic system of Q-tensor Q in R3,
which is shown to be smooth away from a closed set � whose 1-dimensional
parabolic Hausdorff measure is zero.

1. Introduction

In this paper, we consider in dimension three the so-called Beris–Edwards
system [4,10] that describes the hydrodynamic motion of nematic liquid crystals,
with either the Landau–De Gennes bulk potential function [8] or the Maire–Saupe
(Ball–Majumdar) bulk potential function [3]. Roughly speaking, this is a system
that couples a forced Navier–Stokes equation for the underlying fluid velocity field
u with a dissipative parabolic system of Q-tensors modeling nematic liquid crystal
orientation fields. We are interested in establishing the existence of certain global
weak solutions for such a Beris–Edwards system that enjoys partial smoothness
property, analogous to the celebrated works by Cafferalli–Kohn–Nirenberg [5] on
the Navier–Stokes equation and Lin-Liu [24] and [25] on the simplified Ericksen–
Leslie system modeling nematic liquid crystal flows with variable degree of orien-
tations, which was proposed by Ericksen [12,13] and Leslie [22] in the 1960’s.

We begin with the description of this system. Recall that the configuration space
of Q-tensors is the set of traceless, symmetric 3 × 3-matrices, i.e.,

S(3)
0 =

{
Q ∈ R

3×3 : Q = Q�, trQ = 0
}
.
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For technical reasons, we will consider the one constant approximate form of the
Landau–De Gennes energy functional of Q-tensors, namely,

E(Q) =
∫

�

( L

2
|∇Q|2 + Fbulk(Q)

)
dx,

over the Sobolev space H1(�,S(3)
0 ), where � is a three dimensional domain that

is assumed to be either R3 or the torus T3 = R
3/Z3 in this paper. Here L > 0

denotes the elasticity constant, and Fbulk(Q) denotes the bulk potential function
that usually describes the phase transition among various phase states including
isotropic, uniaxial, or biaxial states.We refer interested readers toMottram-Newton
[29] and Sonnet–Virga [33] for a more detailed discussion of general Landau–De
Gennes energy functionals involvingmultiple elasticity constants Li ’s. In this paper,
we will consider two classes of bulk potential functions:

(i) (Landau–De Gennes bulk potential [8].) Here Fbulk(Q) = FLdG(Q), and

FLdG(Q) = F̂LdG(Q) − min
Q′∈S(3)

0

F̂LdG(Q′), (1.1)

where

F̂LdG(Q) = a

2
tr(Q2) − b

3
tr(Q3) + c

4
tr2(Q2), (1.2)

where a, b, c > 0 are temperature dependent material constants. It is a well
known fact that if 0 < a < b2

27c , then F̂LdG reaches its minimum at Q =
s+(d ⊗ d − 1

3 I3), where s+ = b+√
b2−24ac
4c and d ∈ S

2 is a unit vector field.
(ii) (Ball–Majumdar singular bulk potential [3].) Here Fbulk(Q) = FBM(Q) is a

modifiedMaire-Saupe bulk potential introduced by Ball–Majumdar [3], which
is defined as follows. FBM(Q) = GBM(Q) − κ

2 |Q|2 for some κ > 0, and

GBM(Q) ≡
⎧⎨
⎩

min
ρ∈AQ

∫

S2
ρ(p) log ρ(p) dσ(p) if − 1

3 < λ j (Q) < 2
3 ,

∞ otherwise,

(1.3)

where λ j , j = 1, 2, 3, denotes the eigenvalues of Q ∈ S(3)
0 , and

AQ ≡
{
0 ≤ ρ ∈ L1(S2) : ρ(p) = ρ(−p),

∫

S2
ρ(p) dσ(p) = 1,

∫

S2

(
p ⊗ p − 1

3
I3
)
ρ(p) dσ(p) = Q

}
.

It was proven by [3] that GBM is strictly convex and smooth in the interior of
the convex set

D =
{

Q ∈ S(3)
0 : −1

3
≤ λi (Q) ≤ 2

3
, i = 1, 2, 3

}
.
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It is well-known that the first order variation of the Landau–De Gennes energy
functional E is given by

H = L�Q − fbulk(Q), fbulk(Q) = 〈∇Fbulk(Q)〉 = ∇Fbulk(Q)

− tr(∇Fbulk(Q))

3
I3. (1.4)

In particular, if Fbulk(Q) = FLdG(Q), then

fbulk(Q) = 〈∇FLdG(Q)〉 = aQ − b
[
Q2 − tr(Q2)

3
I3
]+ cQtr(Q2).

For 0 < T ≤ ∞, denote QT = � × (0, T ]. Let u : QT → R
3 denote the fluid

velocity field and Q : QT → S(3)
0 denote the director field. Define

S(∇u, Q) = (ξ D + ω)
(
Q + 1

3
I3
)+ (

Q + 1

3
I3
)
(ξ D − ω)

−2ξ
(
Q + 1

3
I3
)
tr(Q∇u),

where

D = 1

2
(∇u + (∇u)�) and ω = 1

2
(∇u − (∇u)�)

are the symmetric part and the antisymmetric part, respectively, of the velocity
gradient tensor∇u, and ξ ∈ R is a rotational parametermeasuring the ratio between
the aligning and tumbling effects to Q by the fluid velocity field.

The Beris–Edwards Q-tensor system modeling the hydrodynamic motion of
nematic liquid crystals reads as [15,30]

⎧⎪⎨
⎪⎩

∂t Q + u · ∇Q − S(∇u, Q) = �H

∂tu + u · ∇u + ∇ P = μ�u + div(τ + σ)

divu = 0,

(1.5)

where � > 0 is a relaxation time parameter, μ > 0 is the fluid viscosity constant,
and τ is the symmetric part of the additional stress tensor given by

ταβ = −ξ
(
Qαγ + δαγ

3

)
Hγβ − ξ Hαγ

(
Qγβ + δγβ

3

)

+2ξ
(
Qαβ + δαβ

3

)
Qγ δ Hγ δ − L∂β Qγ δ∂α Qγ δ, 1 ≤ α, β ≤ 3,

and σ is the antisymmetric part of the additional stress tensor:

σαβ = [Q, H ]αβ :=Qαγ Hγβ − Hαγ Qγβ, 1 ≤ α, β ≤ 3.

Since both fLdG(Q) and fBM(Q) are isotropic functions of Q, we have

[Q, fbluk(Q)] = 0,
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so that

σ = [Q, L�Q − fbulk(Q)] = L[Q,�Q].

In this paper, we will focus on the co-rotational Beris–Edwards system (1.5),
i.e.,

ξ = 0 .

Since the exact values of L , �, μ don’t play roles in our analysis, we will assume,
for simplicity,

L = � = μ = 1 .

We will also assume the domain � to be

� =
{
R
3 i f Fbulk(Q) = FLdG(Q),

T
3 i f Fbulk(Q) = FBM(Q).

With these assumptions and the identity

∂β(∂β Qγ δ∂α Qγ δ) = ∂α Qγ δ�Qγ δ + ∂α

(
1

2
|∇Q|2

)
,

the system (1.5) reduces to the following form:
⎧
⎨
⎩

∂t Q + u · ∇Q − [ω, Q] = �Q − fbulk(Q),

∂tu + u · ∇u + ∇ P = �u − ∇Q · �Q + div[Q,�Q],
divu = 0,

in � × (0,∞) ,

(1.6)

subject to the initial condition

(u, Q)|t=0 = (u0, Q0)(x) for x ∈ �. (1.7)

A key feature of the Beris–Edwards system (1.6) (or (1.5) in general) is the energy
dissipation property, which plays a fundamental role in the analysis of (1.6). More
precisely, if (u, Q) : � × (0,∞) → R

3 × S(3)
0 is a sufficiently regular solution of

(1.5), then it satisfies the following energy inequality [30,31]:

d

dt
E(u, Q)(t) = −

∫

�

(|∇u|2 + |H |2)(x, t) dx, (1.8)

where

E(u, Q)(t) =
∫

�

(
1

2
|u|2 + 1

2
|∇Q|2 + Fbulk(Q)

)
(x, t) dx (1.9)

is the total energy of the complex fluid consisting of the elastic energy of the director
field Q and the kinetic energy of the underlying fluid u. While the right hand side
of (1.8) denotes the dissipation rate of this system of complex fluid.
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Some Notations For Q ∈ S(3)
0 , we use the Frobenius norm of Q, i.e.

|Q| =
√
tr(Q2) = √

Qαβ Qαβ,

and the Sobolev spaces of Q-tensors, W l,p
(
�,S(3)

0

)
(l ∈ N+ and 1 ≤ p ≤ ∞),

are defined by

W l,p(�,S(3)
0

) =
{

Q = (Qαβ) : � → S(3)
0 : Qαβ ∈ W l,p(�), ∀1 ≤ α, β ≤ 3

}
.

When p = 2, we denote W l,2
(
�,S(3)

0

)
by Hl(�,S(3)

0 ). For A, B ∈ R
3×3, we

denote

A : B = Aαβ Bαβ, A · B = tr(AB), |∇Q|2= Qαβ,γ Qαβ,γ , |�Q|2=�Qαβ�Qαβ,

and

(u ⊗ u)αβ = uαuβ, (∇Q ⊗ ∇Q)αβ = ∇α Qγ δ∇β Qγ δ.

Note that A : B = A · B for A, B ∈ S(3)
0 . We also use Asym, Aanti to denote the

symmetric and antisymmetric parts of A, respectively.
Define

H = Closure of
{
u ∈ C∞

0 (�,R3) : divu = 0
}
in L2(�),

and

V = Closure of
{
u ∈ C∞

0 (�,R3) : divu = 0
}
in H1(�).

For 0 ≤ k ≤ 5, Pk denotes the k-dimensional Hausdorff measure on R3 ×R+
with respect to the parabolic distance:

δ((x, t), (y, s)) = max
{
|x − y|,√|t − s|

}
, ∀(x, t), (y, s) ∈ R

3 × R+.

Now we would like to recall the definition of weak solutions of (1.6).

Definition 1.1. A pair of functions (u, Q) : � × (0,∞) → R
3 × S(3)

0 is a weak
solution of (1.6) and (1.7), if u ∈ L∞

t L2
x ∩ L2

t H1
x (� × (0,∞)) and Q ∈ L∞

t H1
x ∩

L2
t H2

x (� × (0,∞)), and for any φ ∈ C∞
0

(
� × [0,∞),S(3)

0

)
and ψ ∈ C∞

0

(
� ×

[0,∞),R3
)
, with divψ = 0 in � × [0,∞), it holds that

∫

�×(0,∞)

[− Q · ∂tφ − �Q · φ − Q · u ⊗ ∇φ + [Q, ω] · φ
]
dxdt

= −
∫

�×(0,∞)

fbulk(Q) · φ dxdt +
∫

�

Q0(x) · φ(x, 0) dx, (1.10)

and ∫

�×(0,∞)

[− u · ∂tψ + ∇u · ∇ψ − u ⊗ u : ∇ψ
]
dxdt

=
∫

�×(0,∞)

[− �Q(ψ · ∇)Q + [�Q, Q] · ∇ψ
]
dxdt

+
∫

�

u0(x) · ψ(x, 0) dx, (1.11)
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Paicu–Zarnescu [30] have obtained the existence of global weak solutions to
(1.6) and (1.7) in R3, and the existence of global strong solutions to (1.6) and (1.7)
in R

2, when the bulk potential function is FLdG(Q). Ding-Huang [9] have studied
local strong solutions of (1.6). For non-corotational Beris–Edwards system (i.e.
ξ �= 0), Paicu–Zarnescu [31] have obtained the existence of global weak solutions
to (1.6) and (1.7) in R

3 for sufficiently small |ξ | > 0. Later, Cavaterra–Rocca–
Wu–Xu [6] have removed the smallness condition on ξ for (1.6) and (1.7) in R

2.
Wilkinson [38] has obtained the existence of global weak solutions to (1.6) and
(1.7) in three dimensional torus T3, when the bulk potential function is the Ball–
Majumdar potential FBM(Q). The situation of Beris–Edwards system (1.6) for the
De Gennes potential FLdG(Q) on bounded domains, under the initial-boundary
condition, behaves slightly different from that on R

3. In fact, Abels–Dolzmann–
Liu [1,2] have established the well-posedness of (1.5) for any arbitrary constant
ξ ; see also [14] for related works on nonisothermal Beris–Edwards system. We
also mention an interesting work on the dynamics of Q-tensor system by Wu–
Xu–Zarnescu [39]. Interested readers can refer to Wang–Zhang–Zhang [37] for a
rigorous derivation from Landau–De Gennes theory to Ericksen-Leslie theory. For
related works on the existence of global weak solutions to the simplified Ericksen–
Leslie system, see [18,26–28].

The works mentioned above left the question open of whether or not certain
weak solutions of (1.5) pose either smoothness or partial smoothness properties.
This motivates us to study both the existence of suitable weak solutions of (1.6)
and their partial regularities. The notion of suitable weak solutions was first intro-
duced by Caffarelli–Kohn–Nirenberg [5] and Scheffer [32] for the Navier–Stokes
equation, and later extended by Lin-Liu [24,25] for the simplified Ericksen-Leslie
systemwith variable degree of orientations.Herewe introduce the notion of suitable
weak solutions to the Beris–Edwards system as follows:

Definition 1.2. Aweak solution (u, P, Q) ∈ (L∞
t L2

x ∩ L2
t H1

x )(�× (0,∞),R3)×
L

3
2 (� × (0,∞)) × (L∞

t H1
x ∩ L2

t H2
x )(� × (0,∞),S(3)

0 ) of (1.6) and (1.7) is a
suitable weak solution of (1.6), if, in addition, (u, P, Q) satisfies the local energy
inequality ∀ 0 ≤ φ ∈ C∞

0 (� × (0, t]),
∫

�

(|u|2 + |∇Q|2)φ(x, t) dx + 2
∫

Qt

(|∇u|2 + |�Q|2)φ(x, s) dxds

≤
∫

Qt

(|u|2 + |∇Q|2)(∂tφ + �φ)(x, s) dxds

+
∫

Qt

[(|u|2 + 2P)u · ∇φ + 2∇Q ⊗ ∇Q : u ⊗ ∇φ](x, s) dxds

+2
∫

Qt

(∇Q ⊗ ∇Q − |∇Q|2 I3) : ∇2φ(x, s) dxds

−2
∫

Qt

[Q,�Q] · u ⊗ ∇φ(x, s) dxds

−2
∫

Qt

[ω, Q] · (∇Q∇φ) + ∇( fbulk(Q)) · ∇Qφ
]
(x, s) dxds. (1.12)
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The notion of suitable weak solutions turns out to be a necessary condition for
the smoothness of (1.6). In fact, the local energy inequality (1.12) automatically
holds for a sufficiently regular solution of (1.5), which can be obtained by mul-
tiplying (1.5)2 by uφ, and taking spatial derivative of (1.5)1 and multiplying the
resulting equation by ∇Qφ, and then applying integration by parts, see Lemma 2.2
below for the details. We would like to point out that in the process of derivation
of (1.12), the cancellation identity

∫

�

[Q, ω] : �Qφ dx = −
∫

�

[Q,�Q] : ∇uφ dx (1.13)

plays a critical role.
Now we are ready to state our main theorem, which is valid for the Beris–

Edwards systemassociatewith both theLandau–DeGennes bulk potential FLdG(Q)

in R
3 and Ball–Majumdar bulk potential FBM(Q) in T

3. We would like to point
out that, due to the technique involving a L1 → L∞ estimate for the advection-
diffusion equation on compact manifolds, we choose to work on the domain T

3,
instead of R3, for the Ball–Majumdar potential FBM.

More precisely, we have

Theorem 1.1. For any u0 ∈ H, if either

(i) �=R
3, Fbulk(·) = FLdG(·) with c>0, and Q0 ∈ H1(R3,S(3)

0 )∩L∞(R3,S(3)
0 ),

or
(ii) � = T

3, Fbulk(·) = FBM(·), and Q0 ∈ H1(T3,S(3)
0 ) satisfies Gbulk(Q0) ∈

L1(T3),
then there exists a global suitable weak solution (u, P, Q) : � × R+ → R

3 ×
R × S(3)

0 of the Beris–Edwards system (1.6), subject to the initial condition (1.7).
Moreover,

(u, Q) ∈ C∞(� × (0,∞) \ �),

where � ⊂ � × R+ is a closed subset with P1(�) = 0.

We would like to highlight some crucial steps of the proof for Theorem 1.1:

(1) The existence of suitable weak solutions to (1.6) and (1.7) is obtained by
modifying the retarded mollification technique, originally due to [32] and [5]
in the construction of suitable weak solutions to the Navier–Stokes equation.

(2) For the Landau–De Gennes potential FLdG(Q), we establish a weak maximum
principle of Q for suitable weak solutions (u, P, Q) of (1.6) and (1.7) that
bounds the L∞-norm of Q in R

3 × (0,∞) in terms of that of initial data Q0;
see also [15]. In particular, ∇l

Q fLdG(Q) is also bounded in R
3 × (0,∞) for

l ≥ 0.
(3) For theBall–Majumdar potential FBM(Q),we follow the approximation scheme

ofGBM byWilkinson [38] and use the convexity property ofGBM(Q) to bound

‖GBM(Q)‖L∞(T3×[δ,T ]), ∀0 < δ < T < ∞,
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in terms of ‖FBM(Q0)‖L1(T3), δ, and T . This guarantees that Q is strictly
physical in T

3 × [δ, T ], i.e., there exists a small γ > 0, depending on δ, T ,
such that

−1

3
+ γ ≤ λ j (Q(x, t)) ≤ 2

3
− γ, j = 1, 2, 3, ∀(x, t) ∈ T

3 × [δ, T ].

In particular, both Q(x, t) and fBM(Q(x, t)) are bounded in T
3 × [δ, T ] for

0 < δ < T .
(4) Based on the local energy inequality (1.12), (2), and (3), we perform a blowing

up argument to obtain an ε0-regularity criteria of any suitable weak solution
(u, P, Q) of (1.6), which asserts that if

�(z0, r)

:= r−2
∫

Pr (x0,t0)
(|u|3 + |∇Q|3) dxdt + (

r−2
∫

Pr (x0,t0)
|P| 32 dxdt

)2 ≤ ε30,

(1.14)

then (x0, t0) ∈ � × (0,∞) is a smooth point of (u, Q). The idea is to show
that (u, P, Q) is well approximated by a smooth solution to a linear coupling
system in the parabolic neighborhood P r

2
(x0, t0) of (x0, t0), which heavily

relies on the local energy inequality (1.12) and interior L
3
2 -estimate of the

pressure function P , which turns out to solve the following Poisson equation:

− �P = div2
(
u ⊗ u +

(
∇Q ⊗ ∇Q − 1

2
|∇Q|2 I3

))
in Br (x0).

(1.15)

Here the following simple identity plays a crucial role in the derivation of
(1.15):

div2[Q1,�Q2 − fbulk(Q2)] = 0 in Br (x0), (1.16)

for Q1, Q2 ∈ H2(Br (x0),S(3)
0 ). See §2 for its proof.

This blowing up argument implies that for some θ ∈ (0, 1),�(x∗,t∗)(r) � Cr3θ for
(x∗, t∗) near (x0, t0) , which can be used to further show that (u,∇Q) are almost
bounded near (x0, t0) by an iterated Riesz potential estimates in the parabolic
Morrey spaces, see also Huang–Wang [19], Hineman–Wang [17], and Huang–
Lin–Wang [18]. Higher order regularity of (u, Q) near (x0, t0) turns out to be
more involved than the usual situations, due to the special nonlinearities. Here we
establish it by performing higher order energy estimates and utilizing the intrinsic
cancellation property, see also [18] for a similar argument on general Ericksen–
Leslie system in dimension two. It is well-known [32] that this step is sufficient to

show that (u, Q) is smooth away from a closed set � which has P 5
3 (�) = 0.

(5) To obtain P1(�) = 0 from the previous step, we adapt the argument by [5] to
show that if

limr→0r−1
∫

Pr (x0,t0)
(|∇u|2 + |∇2Q|2) dxdt < ε21, (1.17)
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then (u, Q) ∈ C∞(P r
2
(x0, t0)). This will be established by extending the so called

A, B, C, D Lemmas in [5] to system (1.6).

The paper is organized as follows: in Sect. 2, we derive both the global and local
energy inequality for sufficiently regular solutions of (1.6). In Sect. 3, we indicate
the construction of suitable weak solutions to (1.6) and (1.7) for both Landau–De
Gennes potential and Ball–Majumdar potential. In Sect. 4, we prove two weak
maximum principles for suitable weak solutions to (1.6) and (1.7): one for Q and
the other for GBM(Q). In Sect. 5, we prove the first ε0-regularity of suitable weak
solutions to (1.6) and (1.7) in terms of�(z0, r). In Sect. 6, we will prove the second
ε0-regularity of suitable weak solutions to (1.6) and (1.7) in terms of (1.17).

2. Global and Local Energy Inequalities

In this section, wewill present proofs for both global energy inequality and local
energy inequality for sufficiently regular solutions to the Beris–Edwards system
(1.6).

Lemma 2.1. Let (u, Q) ∈ C∞(� × (0,∞),R3 × S(3)
0 ) be a smooth solution of

Beris–Edwards system (1.6). Then the global energy inequality (1.8) holds.

Proof. The proof is standard, see for instance [30,38]. ��

Next we are going to present a local energy inequality for sufficiently regular
solutions to the system (1.6).

Lemma 2.2. Assume (u, P, Q) ∈ C∞(� × (0,∞),R3 × R × S(3)
0 ) is a smooth

solution of (1.6). Then for t > 0 and any nonnegative φ ∈ C∞
0 (� × (0, t]), the

following inequality holds on Qt = � × [0, t]:
∫

�

(|u|2 + |∇Q|2)φ(x, t) dx + 2
∫

Qt

(
|∇u|2 + |�Q|2

)
φ dxds

=
∫

Qt

(
|u|2 + |∇Q|2

)
(∂t + �)φ dxds

+
∫

Qt

[(|u|2 + 2P)u · ∇φ + 2(∇Q ⊗ ∇Q) : u ⊗ ∇φ] dxds

+ 2
∫

Qt

[(∇Q ⊗ ∇Q − |∇Q|2 I3) : ∇2φ dxds

− 2
∫

Qt

[Q,�Q] : u ⊗ ∇φ dxds

− 2
∫

Qt

(
[ω, Q] : (∇Q∇φ) + ∇( fbulk(Q)) · ∇Qφ

)
dxds.

(2.1)
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Proof. Using divu = 0, multiplying the momentum equation (1.6)2 by uφ, inte-
grating the resulting equation over �, and applying integration by parts, we obtain

1

2

d

dt

∫

�

|u|2φ dx +
∫

�

|∇u|2φ dx

= 1

2

∫

�

|u|2(∂tφ + �φ)dx + 1

2

∫

�

(|u|2 + 2P)u · ∇φ dx

−
∫

�

(u · ∇)Q · �Qφ dx

−
∫

�

[Q,�Q] : ∇uφ dx −
∫

�

[Q,�Q] : u ⊗ ∇φ dx .

(2.2)

Taking a spatial derivative of the equation of Q (1.6)1 yields

∂t∂α Q + u · ∇∂α Q + ∂αu · ∇Q + ∂α[Q, ω] = �∂α Q − ∂α( fbulk(Q)).

Using again divu = 0, multiplying the equation above by ∂α Qφ, integrating the
resulting equation over �, and applying integration by parts, and sum over α, we
obtain

1

2

d

dt

∫

�

|∇Q|2φ dx +
∫

�

|�Q|2φ dx

= 1

2

∫

�

|∇Q|2∂tφ dx +
∫

�

(u · ∇)Q · (�Qφ + ∇Q∇φ) dx

−
∫

�

[ω, Q] : (�Qφ + ∇Q∇φ) dx

−
∫

�

�Q · ∇Q∇φ dx −
∫

O
∇( fbulk(Q)) · ∇Qφdx .

(2.3)

By direct calculations, there holds

−
∫

�

�Q · ∇Q∇φ dx

=
∫

�

1

2
|∇Q|2�φ dx +

∫

�

(∇Q ⊗ ∇Q − |∇Q|2 I3) : ∇2φ dx, (2.4)

and

∫

�

[ω, Q] :�Qφ dx = −
∫

�

[Q,�Q] : ∇uφ dx . (2.5)
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Hence, by adding (2.2) and (2.3) together and applying (2.4) and (2.5), we have

1

2

d

dt

∫

�

(|u|2 + |∇Q|2)φ dx +
∫

�

(|∇u|2 + |�Q|2)φ dx

= 1

2

∫

�

(|u|2 + |∇Q|2)(∂t + �)φ dx + 1

2

∫

�

(|u|2 + 2P)u · ∇φ dx

+
∫

�

(u · ∇)Q · ∇Q∇φ dx −
∫

�

[Q,�Q] : u ⊗ ∇φ dx

−
∫

�

[ω, Q] : ∇Q∇φ dx −
∫

�

∇( fbulk(Q)) · ∇Qφ dx

+
∫

�

(∇Q ⊗ ∇Q − |∇Q|2 I3) : ∇2φ dx .

This, after integrating over [0, t], yields the local energy inequality (2.1). ��
We close this section by giving a proof of the identity (1.16). More precisely,

we have

Lemma 2.3. For � = R
3 or T3, if Q1, Q2 ∈ H2(�,S(3)

0 ), then

div2[Q1,�Q2 − fbulk(Q2)] = 0 in �, (2.6)

in the sense of distributions.

Proof. For any φ ∈ C∞
0 (�), we see that

∫

�

div2[Q1,�Q2 − fbulk(Q2)](φ) =
∫

�

[Q1,�Q2 − fbulk(Q2)]αβ

) ∂2φ

∂xα∂xβ

dx .

Set

Aαβ = [Q1,�Q2 − fbulk(Q2)]αβ, ∀1 ≤ α, β ≤ 3,

and

Bαβ = ∂2φ

∂xα∂xβ

, ∀1 ≤ α, β ≤ 3.

Since Q1 and Q2 are symmetric, it is easy to check that

Aαβ = −Aβα, Bαβ = Bβα, ∀1 ≤ α, β ≤ 3.

We recall the following matrix contraction:

A : B = Asym : Bsym + Aanti : Banti.

Hence (2.6) follows. ��
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3. Global Existence of Suitable Weak Solutions

This section is devoted to the construction of suitable weak solutions to the
Beris–Edwards system (1.6). The idea is motived by the “retarded mollification
technique” originally due to [32] and [5] in the context of Navier–Stokes equations.
Since the procedure for Ball–Majumdar potential FBM(Q) is somewhat different
from that for Landau–De Gennes potential FLdG(Q), we will describe them in two
separate subsections.

We explain the construction of suitable weak solutions in the spirit of [5]. For
f : R4 → R and 0 < θ < 1, define the “retarded mollifier” �θ( f ) of f by

�θ [ f ](x, t) = 1

θ4

∫

R4
η
( y

θ
,
τ

θ

)
f̃ (x − y, t − τ) dydτ,

where

f̃ (x, t) =
{

f (x, t) t ≥ 0,

0 t < 0,

and the mollifying function η ∈ C∞
0 (R4) satisfies

⎧⎪⎨
⎪⎩

η ≥ 0 and
∫

R4
η dxdt = 1,

supp η ⊂
{
(x, t) : |x |2 < t, 1 < t < 2

}
.

It follows from Lemma A.8 in [5] that for θ ∈ (0, 1] and 0 < T ≤ ∞,

div�θ [u] = 0 if divu = 0,

sup
0≤t≤T

∫

R3
|�θ [u]|2(x, t) dx ≤ C sup

0≤t≤T

∫

R3
|u|2(x, t) dx

∫

R3×[0,T ]
|∇�θ [u]|2(x, t) dxdt ≤ C

∫

R3×[0,T ]
|∇u|2(x, t) dxdt.

Now we proceed to find the existence of suitable weak solutions of (1.6) and
(1.7) as follows:

3.1. The Landau–De Gennes potential Fbulk(Q) = FLdG(Q) and � = R
3

With the mollifier �θ [u] ∈ C∞(R4), we introduce an approximate version of
the Beris–Edwards system (1.6), namely,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t Qθ + uθ · ∇�θ [Qθ ] − [ωθ ,�θ [Qθ ]] = �Qθ − fLdG(Qθ ),

∂tuθ + �θ [uθ ] · ∇uθ + ∇ Pθ

= �uθ − ∇(�θ [Qθ ]) · (�Qθ − fLdG(Qθ )
)

+div[�θ [Qθ ],�Qθ − fLdG(Qθ )],
divuθ = 0,

in QT (3.1)



Suitable Weak Solutions for the Co-rotational Beris–Edwards System 761

subject to the initial condition (1.7). Here ωθ = ω(uθ ) = ∇uθ−(∇uθ )�
2 .

The idea behind the construction of suitableweak solutions to (3.1) is as follows:
for a fixed large N ≥ 1, set θ = T

N ∈ (0, 1], we want to find u = uθ , P = Pθ ,
and Q = Qθ solving (3.1) and (1.7). Since �θ [u] and �θ [Q] are smooth, and their
values at time t depend only on the values of u and Q at times prior to t −θ , solving
(3.1) and (1.7) involves iteratively solving (3.1) in the interval [mθ, (m + 1)θ ],
subject to the initial condition

(u, Q)
∣∣
t=mθ

= (uθ , Qθ )(·, mθ) in R
3

for 0 ≤ m ≤ N − 1. This amounts to solving a system that couples a semi-linear
parabolic-like equation for Q and a Stokes-like equation for u, in which all the
coefficient functions are given smooth functions.

We can verify, by the classical Faedo–Garlekin method, the existence of
(uθ , Qθ , Pθ ) inductively on each time interval (mθ, (m + 1)θ) for all 0 ≤ m ≤
N −1. Indeed form = 0, according to the definition of�θ ,�θ(uθ ) = �θ(Qθ ) = 0,
and the system (3.1) reduces to a linear system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t Qθ = �Qθ − fLdG(Qθ )

∂tuθ + ∇ Pθ = �uθ

divuθ = 0

(uθ , Qθ )|t=0 = (u0, Q0)

(3.2)

in R3 × [0, θ ]. For the system (3.2), Qθ and uθ are decouple, and uθ can be found
according to the standard theory of Stokes equations, while the equation of Qθ is
a semi-linear parabolic equation which can be solved by the standard method for
parabolic equations.

Suppose now that the system (3.1) has been solved for some 0 ≤ k < N − 1.
We are going to solve the system (3.1):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t Qαβ + u · ∇ Q̃αβ − [ω, Q̃]αβ = �Qαβ − fLdG(Q)αβ

∂tuα + ũ · ∇uα + ∂α P = �uα − ∂α Q̃βγ (�Q − fLdG(Q))βγ

+ ∂β [Q̃,�Q − fLdG(Q)]αβ

divu = 0,

(3.3)

in the time interval [kθ, (k + 1)θ ] with the initial data

(u, Q)|t=kθ = (uθ , Qθ )(·, kθ) in R
3, (3.4)

and

Q̃ = �θ [Qθ ] and ũ = �θ [uθ ].

Note that ũ and Q̃ are smooth functions in [kθ, (k + 1)θ ] × R
3.
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The existence of (u, Q) in (3.3) may be solved by using the Faedo–Galerkin
method. Indeed for a pair of smooth test functions (ψ, φ) ∈ H2(R3,S(3)

0 )×V, the
system (3.3) turns to be

d

dt

∫

R3
(∇Q,∇ψ) dx −

∫

R3
(u · ∇ Q̃,�ψ) dx −

∫

R3
([−ω, Q̃]αβ,�ψαβ) dx

= −
∫

R3
(�Qαβ − fLdG(Q)αβ,�ψαβ) dx,

(3.5)

and

d

dt

∫

R3
(u, φ) dx +

∫

R3
(ũ · ∇u, φ) dx +

∫

R3
(∇u,∇φ) dx

= −
∫

R3

(
∂α Q̃βγ (�Q − fLdG(Q))βγ , φα

)
dx

−
∫

R3

(
[Q̃,�Q − fLdG(Q)]αβ, ∂βφα

)
dx,

(3.6)

in the sense of distributions. The systemof first orderODEequations (3.5)–(3.6) can
be solvedwhen the test function (ψ, φ) are taken to be the basis of H2(R3,S(3)

0 )×V
up to a short time interval [kθ, kθ + T0]. Performing the energy estimate for (3.3)
as for the original system, we get that, for kθ ≤ t ≤ kθ + T0,

sup
t≥kθ

∫

R3

(
|uθ |2 + |∇Qθ |2 + FLdG(Qθ )

)
dx

+
∫ t

kθ

∫

R3

(
|∇uθ |2 + |�Q − fLdG(Qθ )|2

)
dxds

≤
∫

R3

(
|uθ |2 + |∇Qθ |2 + FLdG(Qθ )

)
(x, kθ) dx .

Hence T0 can be extended up to θ .
Let (uθ , Pθ , Qθ ) be the global weak solution of (3.1) and (1.7) in QT . Then

uθ ∈ L∞
t L2

x ∩ L2
t H1

x (QT ), Qθ ∈ L∞
t H1

x ∩ L2
t H2

x (QT ), Pθ ∈ L2(QT ).

Observe that

[ωθ ,�θ [Qθ ]] : (�Qθ − fLdG(Qθ )) := −[�θ [Qθ ],�Qθ − fLdG(Qθ )] : ∇uθ .

Hence, by calculations similar to Lemma 2.1, we deduce that (uθ , Qθ ) satisfies
the global energy inequality, for 0 ≤ t ≤ T ,

E(uθ , Qθ )(t) +
∫

R3×[0,t]
(|∇uθ |2 + |�Qθ − fLdG(Qθ )|2) dxdt

≤ E(uθ , Qθ )(0) =
∫

R3

(
1

2
|u0|2 + 1

2
|∇Q0|2 + FLdG(Q0)

)
(x, t) dx .

(3.7)
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Direct calculations show that

∫

R3
�Qθ · fLdG(Qθ ) dx

= −a
∫

R3
|∇Qθ |2 dx − c

∫

R3

(|∇Qθ |2|Qθ |2 + 1

2
|∇tr((Qθ )2)|2) dx

+ b
∫

R3
∇((Qθ )2 − tr((Qθ )2)

3
I3
) · ∇Qθ dx

≤ − c

4

∫

R3

(|∇Qθ |2|Qθ |2 + 1

2
|∇tr((Qθ )2)|2) dx + C(a, b, c)

∫

R3
|∇Qθ |2 dx .

This, combined with the assumption c > 0 and estimate (3.7), gives

d

dt

∫

R3
(|uθ |2 + |∇Qθ |2 + FLdG(Qθ ))(x, t) dx + 2

∫

R3

(
|∇uθ |2 + |�Qθ |2

)
dx

+ c
∫

R3

(
|∇Qθ |2|Qθ |2 + 1

2
|∇tr((Qθ )2)|2

)
dx

≤ C(a, b, c)
∫

R3
|∇Qθ |2 dx .

(3.8)

Therefore we deduce from (3.8) and Gronwall’s inequality that

sup
0≤t≤T

∫

R3
(|uθ |2 + |∇Qθ |2 + FLdG(Qθ ))(x, t) dx

+
∫

R3×[0,T ]

(
|∇uθ |2 + |�Qθ |2

)
dxdt

≤ C(a, b, c, T )

(
‖u0‖2L2(R3)

+ ‖Q0‖2H1(R3)

)
.

(3.9)

From (1.1), we know that there exists a M0 > 0, depending on a, b, c, such that

FLdG(Q) ≥ c

2
|Q|4, ∀Q ∈ S(3)

0 with |Q| ≥ M0.

This, combined with (3.9) and FLdG(Q) ≥ 0, implies that

sup
0≤t≤T

∫

{x∈R3: |Qθ (x,t)|≥M0}
|Qθ (x, t)|4 dx

≤ 2

c
sup

0≤t≤T

∫

R3
FLdG(Qθ )(x, t) dx

≤ C(a, b, c, T )
(‖u0‖2L2(R3)

+ ‖Q0‖2H1(R3)

)
.

(3.10)
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From (3.10), we can conclude that for any compact set K ⊂ R
3,

sup
0≤t≤T

∫

K
|Qθ (x, t)|4 dx

≤ sup
0≤t≤T

{ ∫

{x∈K : |Qθ (x,t)|≤M0}
|Qθ (x, t)|4 dx

+
∫

{x∈K : |Qθ (x,t)|>M0}
|Qθ (x, t)|4 dx

}

≤ |K |M4
0 + C(a, b, c, T )

(‖u0‖2L2(R3)
+ ‖Q0‖2H1(R3)

)
.

(3.11)

From (3.9) and (3.11), we have that uθ is uniformly bounded in L2
t H1

x (R3×[0, T ]),
Qθ is uniformly bounded in L2

t H2
x (K × [0, T ]) for any compact set K ⊂ R

3, and
∇Qθ is uniformly bounded in L2

t H1
x (R3 × [0, T ]). Therefore, after passing to a

subsequence, we may assume that as θ → 0 (or equivalently N → ∞), there
exist u ∈ L∞

t L2
x ∩ L2

t H1
x (R3 × [0, T ]), Q ∈ ∩R>0L∞

t L4
x (BR × [0, T ]), with

∇Q ∈ L∞
t L2

x ∩ L2
t H1

x (R3 × [0, T ]), such that
⎧⎪⎨
⎪⎩

Qθ ⇀ Q in L2([0, T ], L2(R3)),

∇Qθ ⇀ ∇Q in L2([0, T ], H1(R3)),

uθ ⇀ u in L2([0, T ], H1(R3)).

(3.12)

Hence by the lower semicontinuity and (3.7) we have that

E(u, Q)(t) +
∫

R3×[0,t]
(|∇u|2 + |�Q − fLdG(Q)|2) dxdt

≤ E(u, Q)(0) =
∫

R3

(
1

2
|u0|2 + 1

2
|∇Q0|2 + FLdG(Q0)

)
(x, t) dx (3.13)

holds for 0 ≤ t ≤ T .
Nowwe want to estimate the pressure function Pθ . Taking divergence of (3.1)2

gives

−�Pθ = div2(�θ [uθ ] ⊗ uθ ) + div
(∇(�θ [Qθ ]) · (�Qθ − fLdG(Qθ ))

)

− div2
([�θ [Qθ ],�Qθ − fLdG(Qθ )])

= div2(�θ [uθ ] ⊗ uθ ) + div
(∇(�θ [Qθ ]) · (�Qθ − fLdG(Qθ ))

)
in R

3.

(3.14)

Here we have used in the last step the fact that

div2[�θ [Qθ ],�Qθ − fLdG(Qθ )] = 0 in R
3,

which follows from (1.16).
For Pθ , we claim that Pθ in L

5
3 (R3 × [0, T ]) and

∥∥Pθ
∥∥

L
5
3 (R3×[0,T ]) ≤ C

(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
, ∀θ ∈ (0, 1].

(3.15)
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To see this, first observe that (3.9) implies ∇(�θ [Qθ ]) ∈ L∞
t L2

x ∩ L2
t H1

x (R3 ×
[0, T ]). Hence by the Sobolev interpolation inequality we have that

∥∥∇(�θ [Qθ ])∥∥
L10

t L
30
13
x (R3×[0,T ])

� C
∥∥∇(�θ [Qθ ])∥∥L∞

t L2
x ∩L2

t H1
x (R3×[0,T ])

� C
(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
.

By Hölder’s inequality, we then have that
∥∥∇(�θ [Qθ ]) · (�Qθ − fLdG(Qθ ))

∥∥
L

5
3
t L

15
14
x (R3×[0,T ])

≤ ∥∥∇(�θ [Qθ ])∥∥
L10

t L
30
13
x (R3×[0,T ])

∥∥�Qθ − fLdG(Qθ )
∥∥

L2(R3×[0,T ])

� C
(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
.

(3.16)

By Calderon-Zygmund’s L p-estimate [34], we conclude that Pθ ∈ L
5
3 ([0, T ] ×

R
3), and∥∥Pθ
∥∥

L
5
3 ([0,T ]×R3)

≤ C
[∥∥�θ [uθ ] ⊗ uθ

∥∥
L

5
3 (R3×[0,T ]) + ∥∥∇(�θ [Qθ ]) · (�Qθ − fLdG(Qθ ))

∥∥
L

5
3
t L

15
14
x (R3×[0,T ])

]

≤ C
[∥∥uθ

∥∥2
L

1
3 (R3×[0,T ]) + ∥∥∇(�θ [Qθ ]) · (�Qθ − fLdG(Qθ ))

∥∥
L

5
3
t L

15
14
x (R3×[0,T ])

]

≤ C
(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
.

It follows from (3.15) that we may assume that there exists P ∈ L
5
3 (R3 × [0, T ])

such that, as θ → 0,

Pθ ⇀ P in L
5
3 (R3 × [0, T ]). (3.17)

From (3.1)2 and the bounds (3.9) and (3.10), we have that

∂tuθ = −�θ [uθ ] · ∇uθ − ∇ Pθ + �uθ − ∇(�θ [Qθ ]) · (�Qθ − fLdG(Qθ ))

+div([�θ [Qθ ],�Qθ − fLdG(Qθ )])
∈ L

5
4 (R3 × [0, T ]) + L

5
3 ([0, T ], W −1, 53 (R3)) +

⋂
R>0

L2([0, T ], W −1, 43 (BR)),

and for any 0 < R < ∞,
∥∥∥∂tuθ

∥∥∥
L

5
4 (R3×[0,T ])+L

5
3 ([0,T ],W−1, 53 (R3))+L2([0,T ],W−1, 43 (BR))

� C
(
a, b, c, R, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
, ∀θ ∈ (0, 1].

(3.18)

Similarly, it follows from (3.1)1 and the bounds (3.9) and (3.10) that ∂t Qθ ∈
L

5
3 (R3 × [0, T ]) +⋂

R>0 L2([0, T ], L
4
3 (BR)), and

∥∥∥∂t Qθ
∥∥∥

L
5
3 (R3×[0,T ])+L2([0,T ],L 4

3 (BR))

≤ C
(
a, b, c, R, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
(3.19)
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for all 0 < R < ∞ and θ ∈ (0, 1].
By (3.9), (3.10), (3.18) and (3.19), we can apply Aubin–Lions’ compactness

Lemma ([35]) to conclude that, for any 0 < R < ∞,

(
uθ , Qθ ,∇Qθ

) → (
u, Q,∇Q

)
in L3(BR × [0, T ]), as θ → 0. (3.20)

On the other hand, it follows from FLdG(Qθ ) ≥ 0 in R3 × [0, T ] and (3.9) that

sup
0≤t≤T

∫

R3
|∇Qθ |2(x, t) dx ≤ C

(
a, b, c, T, ‖u0‖L2(R3), ‖Q0‖H1(R3)

)
.

Hence, by (3.20), we also have that for any 1 < p1 < 6 and 1 < p2 < 10
3 ,

Qθ → Q in L p1(BR × [0, T ]); uθ → u in L p2(BR × [0, T ]) as θ → 0.

(3.21)

With the convergences (3.12), (3.17), and (3.20), it is not hard to show that the
limit (u, P, Q) is a weak solution of (1.6) and (1.7), i.e., it satisfies the system (1.6)
and (1.7) in the sense of distributions (see also [30] Proposition 3). We leave the
details to interested readers, apart frompointing out that in the sense of distributions,
as θ → 0,

∇ Pθ − ∇(�θ [Qθ ]) · fLdG(Qθ ) → ∇ P − ∇Q · fLdG(Q) = ∇(P − FLdG(Q)).

To show that (u, P, Q) is a suitable weak solution of (1.6), observe that, as
in Lemma 2.2, we can test equations of uθ in (3.1) by uθφ, and taking a spatial
derivative of the equation of Qθ in (3.1) and then testing it by ∇Qθφ for any
nonnegative φ ∈ C∞

0 (R3 × (0, t]), to obtain the following local energy inequality:
∫

R3

(|uθ |2 + |∇Qθ |2)φ(x, t) dx + 2
∫ t

0

∫

R3

(|∇uθ |2 + |�Qθ |2)φ dxds

=
∫ t

0

∫

R3

[(|uθ |2 + |∇Qθ |2)(∂tφ + �φ) + 2∇�θ [Qθ ] ⊗ ∇Qθ : uθ ⊗ ∇φ
]
dxds

+
∫ t

0

∫

R3
(|uθ |2�θ [uθ ] · ∇φ + 2Pθuθ · ∇φ + 2∇(�θ [Qθ ]) · fLdG(Qθ )uθφ) dxds

+2
∫ t

0

∫

R3

([�θ [Qθ ], fLdG(Qθ )]) : ∇uθφ dxds

+2
∫ t

0

∫

R3

(∇Qθ ⊗ ∇Qθ − |∇Qθ |2 I3
)
) : ∇2φ dxds

−2
∫ t

0

∫

R3
([�θ [Qθ ],�Qθ − fLdG(Qθ )]) : uθ ⊗ ∇φ dxds

−2
∫ t

0

∫

R3
[ωθ , �θ [Qθ ]] : ∇Qθ∇φ dxds

−2
∫ t

0

∫

R3
∇( fLdG(Qθ )) · ∇Qθφ dxds. (3.22)
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Taking the limit in (3.22) as θ → 0, we see by the lower semicontinuity that it
holds that∫

R3

(|u|2 + |∇Q|2)φ(x, t) dx + 2
∫ t

0

∫

R3

(|∇u|2 + |�Q|2)φ dxds

≤ lim inf
θ→0

[ ∫

R3

(|uθ |2 + |∇Qθ |2)φ(x, t) dx

+ 2
∫ t

0

∫

R3

(|∇uθ |2 + |�Qθ |2)φ dxds
]
,

while it follows from (3.20) and (3.21) that

lim
θ→0

Right hand side of (3.22)

=
∫ t

0

∫

R3

(
|u|2 + |∇Q|2

)
(∂tφ + �φ) dxdt

+
∫ t

0

∫

R3
(|u|2 + |∇Q|2 + 2(P − FLdG(Q)))u · ∇φ)

+ 2∇Q ⊗ ∇Q : u ⊗ ∇φ dxds

+ 2
∫ t

0

∫

R3

[∇Q ⊗ ∇Q − |∇Q|2 I3
] : ∇2φ dxds

− 2
∫ t

0

∫

R3
[Q,�Q] : u ⊗ ∇φ dxds

− 2
∫ t

0

∫

R3

(
ωQ − Qω

) : ∇Q∇φ dxds−2
∫ t

0

∫

R3
∇( fLdG(Q)) · ∇Qφ dxds.

Here we have used the following convergence result:
∫ t

0

∫

R3
∇(�θ [Qθ ]) · fLdG(Qθ )uθφ dxds →

∫ t

0

∫

R3
∇Q · fLdG(Q)uφ dxds

=
∫ t

0

∫

R3
∇(FLdG(Q))uφ dxds

= −
∫ t

0

∫

R3
FLdG(Q)u∇φ dxds.

(3.23)

Putting these together yields the desired local energy inequality (1.12) for (u, P, Q).
This completes the proof of the existence of suitable weak solution in the first case.

��
In the next subsection,wewill indicate how to construct a suitableweak solution

of (3.1) for the Ball–Majumdar potential function.

3.2. The Ball–Majumdar potential Fbulk(Q) = FBM(Q) and � = T
3

Since GBM, given by (1.3), is singular outside the physical domain

D =
{

Q ∈ S(3)
0 : −1

3
< λi (Q) <

2

3
, i = 1, 2, 3

}
,
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weneed to regularize it. For this part, we follow the scheme byWilkinson [38] (Sect.
3) very closely. First we regularize it by using the Yosida–Moreau regularization
of convex analysis [11,36]: For m ∈ N

+, define

G̃m
BM(Q) := inf

A∈S(3)
0

{
m|A − Q|2 + GBM(A)

}
, ∀Q ∈ S(3)

0 .

Then smoothly mollify G̃m
BM through the standard mollifications:

Gm
BM(Q) :=

∫

S(3)
0

G̃m
BM(Q − R)�m(R) d R,

where �m(R) = m5�(m R), and � ∈ C∞
0 (S(3)

0 ) is nonnegative and satisfies

supp � ⊂
{

Q ∈ S(3)
0 : |Q| < 1

}
,

∫

S(3)
0

�(R) d R = 1.

As in [38] Proposition 3.1, Gm
BM satisfies the following properties:

(G0) Gm
BM is an isotropic function of Q.

(G1) Gm
BM ∈ C∞(S(3)

0 ) is convex on S(3)
0 .

(G2) There exists a constant g0 > 0, independent of m, such that for any m ∈ N
+,

Gm
BM(Q) ≥ −g0 holds for all Q ∈ S(3)

0 .

(G3) Gm
BM(Q) ≤ Gm+1

BM (Q) ≤ GBM(Q) on S(3)
0 for all m ≥ 1.

(G4) Gm
BM → GBM and ∇Q Gm

BM → ∇QGBM in L∞
loc(D), as m → ∞.

(G5) There exist α(m), β(m), γ (m) > 0 such that

α(m)|Q| − β(m) ≤ ∣∣〈∇Q Gm
BM(Q)〉∣∣ ≤ γ (m)(1 + |Q|), ∀Q ∈ S(3)

0 .

(G6) For k ≥ 2,there exists C(m, k) > 0 such that
∣∣〈∇k

Q Gm
BM(Q)〉∣∣ ≤ C(m, k)(1 + |Q|2), ∀Q ∈ S(3)

0 .

For our purpose in this paper, we also need the following estimate on Gm
BM.

Lemma 3.1. For any m ∈ N
+, Gm

BM satisfies

Gm
BM(Q) ≥ m

4
|Q|2 − g0, ∀Q ∈ S(3)

0 with |Q| ≥ 11, (3.24)

where g0 > 0 is the same constant given by (G2).

Proof. Since GBM(Q) = ∞ for Q �∈ D, it follows from the definition of G̃m
BM and

(G2) that

G̃m
BM(Q) = inf

A∈D

{
m|A − Q|2 + GBM(A)

}

≥ inf
A∈D

{
m|A − Q|2

}
− g0

= mdist2
(
Q,D)− g0.
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Thus for any Q ∈ S(3)
0 with |Q| ≥ 10, we have

G̃m
BM(Q) ≥ m(|Q| − 2√

3
)2 − g0 ≥ m

( |Q|√
2

)2 − g0 = m

2
|Q|2 − g0.

It is not hard to see that this estimate, along with the definition of Gm
BM, yields

(3.24). The proof is now complete. ��
Now we set

Fm
BM(Q) = Gm

BM(Q) − κ

2
|Q|2, ∀Q ∈ S(3)

0 ,

and

f m
BM(Q) = 〈∇QGm

BM(Q)
〉− κ Q, ∀Q ∈ S(3)

0 .

Observe that the convexity of Gm
BM on S(3)

0 yields that

tr∇Q f m
BM(Q)(∇Q,∇Q) = tr∇2

Q Fm
BM(Q)(∇Q,∇Q) ≥ −κ|∇Q|2, (3.25)

for all Q ∈ H1(�,S(3)
0 ).

Note that if we view a function on T3 as a Z3- periodic function onR3, then the
“retarded” mollification procedure given in the previous subsection can be directly
performed on functions defined in T3.

Similar to the Sect. 3.1, we can introduce an approximate system of (3.1) for
the Ball–Majumdar potential as follows. For T > 0 and a fixed large N ∈ N

+, let
θ = T

N ∈ (0, 1]. Then we seek (uθ,m, Pθ,m, Qθ,m) that solves
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t Qθ,m + uθ,m · ∇�θ [Qθ,m] − [ωθ,m, �θ [Qθ,m]]
= �Qθ,m − f m

BM(Qθ,m),

∂tuθ,m + �θ [uθ,m] · ∇uθ,m + ∇ Pθ,m

= �uθ,m − ∇(�θ [Qθ,m]) · (�Qθ,m − f m
BM(Qθ,m)

)
+div

([�θ [Qθ,m],�Qθ,m − f m
BM(Qθ,m)]) ,

divuθ,m = 0,

(3.26)

in T
3 × [0, T ], subject to the initial condition (1.7). Here ωθ,m = ω(uθ,m) =

∇uθ,m−(∇uθ,m)�
2 .

Since the system (3.26) is simply the system (3.1) with fLdG replaced by f m
BM,

we can argue as in the Sect. 3.1 to find a global weak solution (uθ,m, Pθ,m, Qθ,m)

of (3.26) and (1.7) in QT = T
3 × [0, T ] such that

uθ,m ∈ L∞
t L2

x ∩ L2
t H1

x (QT ), Qθ,m ∈ L∞
t H1

x ∩ L2
t H2

x (QT ), Pθ,m ∈ L2(QT ).

Moreover, by calculations similar to Lemma 2.1, we deduce that (uθ,m, Qθ,m)

satisfies the global energy inequality, for 0 ≤ t ≤ T ,

E(uθ,m, Qθ,m)(t) +
∫

T3×[0,t]

(
|∇uθ,m |2 + |�Qθ,m − f m

BM(Qθ,m)|2
)
dxdt

= E(uθ,m, Qθ,m)(0) ≤
∫

T3

(
1

2
|u0|2 + 1

2
|∇Q0|2 + FBM(Q0)

)
(x) dx .

(3.27)
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It follows from (3.27) and (3.25) that∫

T3×[0,t]
|�Qθ,m − f m

BM(Qθ,m)|2 dxdt

=
∫

T3×[0,t]

(
|�Qθ,m |2 + | f m

BM(Qθ,m)|2 − 2�Qθ,m · f m
BM(Qθ,m)

)
dxdt

=
∫

T3×[0,t]

(
|�Qθ,m |2 + | f m

BM(Qθ,m)|2 + 2tr∇Q f m
BM(Qθ,m)(∇Qθ,m ,∇Qθ,m)

)
dxdt

≥
∫

T3×[0,t]

(
|�Qθ,m |2 + | f m

BM(Qθ,m)|2 − κ|∇Qθ,m |2
)
dxdt.

Substituting this into (3.27) and applying Gronwall’s inequality, we obtain that for
any 0 ≤ t ≤ T ,

E(uθ,m, Qθ,m)(t) +
∫

T3×[0,t]
(|∇uθ,m |2 + |�Qθ,m |2 + | f m

BM(Qθ,m)|2) dxdt

≤ eCT
∫

T3

(
1

2
|u0|2 + 1

2
|∇Q0|2 + FBM(Q0)

)
(x) dx . (3.28)

It follows from (3.27) that

sup
0≤t≤T

∫

T3
Fm
BM(Qθ,m)(x, t) dx ≤

∫

T3

(
1

2
|u0|2 + 1

2
|∇Q0|2 + FBM(Q0)

)
(x) dx .

This, combined with (G2) and (3.24), implies that there exists a sufficiently large
m0 = m0(κ, g0) ∈ N

+ such that, for all m ≥ m0,
(m

8
− κ

2

) ∫

{x∈T3: |Qθ,m (x,t)|≥11}
|Qθ,m |2(x, t) dx

≤
∫

{x∈T3: |Qθ,m (x,t)|≥11}

[(m

4
|Qθ,m |2 − g0

)
− κ

2
|Qθ,m |2

]
(x, t) dx

≤
∫

{x∈T3: |Qθ,m (x,t)|≥11}
Fm
BM(Qθ,m)(x, t) dx

=
∫

T3
Fm
BM(Qθ,m)(x, t) dx −

∫

{x∈T3: |Qθ,m (x,t)|≤11}
Fm
BM(Qθ,m)(x, t) dx

=
∫

T3
Fm
BM(Qθ,m)(x, t) dx

−
∫

{x∈T3: |Qθ,m (x,t)|≤11}

[(
Gm

BM(Qθ,m) + g0
)− κ

2
|Qθ,m |2 − g0

]
(x, t) dx

≤
∫

T3
Fm
BM(Qθ,m)(x, t) dx +

∫

{x∈T3: |Qθ,m (x,t)|≤11}
(g0 + κ

2
|Qθ,m |2(x, t)) dx

≤
∫

T3
(
1

2
|u0|2 + 1

2
|∇Q0|2 + FBM(Q0)

)
(x) dx + (g0 + 121κ

2
)|T3|

holds for any 0 ≤ t ≤ T . Therefore we conclude that for m ≥ m0, it holds that

sup
0≤t≤T

∫

T3
|Qθ,m |2(x, t) dx

≤ C
(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), , g0, κ

)
.

(3.29)
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As in Sect. 3.1, the pressure function Pθ,m solves

− �Pθ,m

= div2
(
�θ [uθ,m] ⊗ uθ,m)+ div

(∇(�θ [Qθ,m])·
(�Qθ,m − f m

BM(Qθ,m))
) in T

3. (3.30)

We can apply the same argument as in the previous subsection to conclude that

Pθ,m ∈ L
5
3 (T3 × [0, T ]), and

∥∥Pθ,m
∥∥

L
5
3 (T3×[0,T ]) ≤ C

(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), , g0, κ

)
.

(3.31)

With estimates (3.31) and (3.28), we can utilize the system (3.26) to obtain that
∥∥∥∂tuθ,m

∥∥∥
L2([0,T ],W−1,4(T3))

� C
(
‖u0‖L2(R3), ‖Q0‖H1(R3), ‖FBM(Q0)‖L1(T3), , g0, κ

)
, (3.32)

∥∥∥∂t Qθ,m
∥∥∥

L2([0,T ],L 3
2 (T3))

≤ C
(
‖u0‖L2(R3), ‖Q0‖H1(R3), ‖FBM(Q0)‖L1(T3), , g0, κ

)
, (3.33)

uniformly for θ ∈ (0, 1] and m ≥ m0.
For each fixed m ≥ m0, we can assume without loss of generality that there

exists

(um, Pm, Qm) ∈ L∞
t L2

x ∩ L2
t H1

x (QT ) × L
5
3 (QT ) × L∞

t H1
x (QT )

such that as θ → 0,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uθ,m ⇀ um in L2
t H1

x (QT ),

uθ,m → um in L p(QT ) ∀1 < p < 10
3 ,

Pθ,m ⇀ Pm in L
5
3 (QT ),

Qθ,m ⇀ Qm in L2
t H2

x (QT ),

Qθ,m → Qm in Lr
t Ls

x (QT ), ∀1 < r, s < ∞,

�Qθ,m − f m
BM(Qθ,m) ⇀ �Qm − f m

BM(Qm) in L2(QT ),

Fm
BM(Qθ,m) → Fm

BM(Qm) in L1(QT ).

As in Sect. 3.1, we can now verify that (um, Pm, Qm) is a weak solution of
⎧
⎪⎪⎨
⎪⎪⎩

∂t Qm + um · ∇Qm − [ωm, Qm] = �Qm − f m
BM(Qm),

∂tum + um · ∇um + ∇(Pm − Fm
BM(Q))

= �um − ∇Qm · �Qm+div[Qm,�Qm],
divum = 0,

(3.34)

in T3 × [0, T ], subject to the initial condition (1.7).



772 H. Du et al.

By the lower semicontinuity the following global energy inequality holds: for
0 ≤ t ≤ T , ∫

T3
(
1

2
|um |2 + 1

2
|∇Qm |2 + Fm

BM(Qm))(x, t) dx

+
∫

T3×[0,t]
(|∇um |2 + |�Qm − f m

BM(Qm)|2) dxdt

≤
∫

T3
(
1

2
|u0|2 + 1

2
|∇Q0|2 + FBM(Q0))(x) dx, (3.35)

and

E(um, Qm)(t) +
∫

T3×[0,t]
(|∇um |2 + |�Qm |2 + | f m

BM(Qm)|2) dxdt

≤ eCT
∫

T3
(
1

2
|u0|2 + 1

2
|∇Q0|2 + FBM(Q0))(x) dx, ∀t ∈ [0, T ]. (3.36)

Also it follows from (3.29), (3.31), (3.32) and (3.36) that

max
{∥∥Qm

∥∥
L∞

t L2(QT )
,
∥∥Pm

∥∥
L

5
3 (QT )

,
∥∥∂tum

∥∥
L2

t W−1,4
x (QT )

,
∥∥∂t Qm

∥∥
L2

t L
3
2
x (QT )

}

≤ C
(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), , g0, κ

)
. (3.37)

Furthermore, we can check that (um, Pm, Qm) is a suitable weak solution of (3.34)
by verifying that it satisfies the local inequality (1.12) with fbulk replaced by f m

BM.
To show that as m → ∞, (um, Pm, Qm) gives rise to a suitable weak solution

of (3.1), we need to first show that Qm lies in a strictly physical subdomain of the
physical domainD, since GBM(Q) blows up as Q ∈ D tends to ∂D. This amounts
to establishing an L∞-estimate of GBM(Q) in terms of the L1-norm of GBM(Q0),
which was previously shown by Wilkinson [38] in a slightly different setting.

More precisely, we need the following version of a generalized maximum prin-
ciple:

Lemma 3.2. There exist m0 ∈ N
+ and a positive constant C0, independent of m,

such that for all m ≥ m0,
∥∥Gm

BM(Qm)(·, t)
∥∥

L∞(T3)
≤ C0t−

5
2
∥∥GBM(Q0)

∥∥
L1(T3)

+ C0,∀0 < t < T .

(3.38)

For now we assume Lemma 3.2, which will be proved in §4 below. We may
assume without loss of generality that there exists

(u, P, Q) ∈ L∞
t L2

x ∩ L2
t H1

x (QT ) × L
5
3 (QT ) × L∞

t H1
x ∩ L2

t H2
x (QT )

such that ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

um ⇀ u in L2
t H1

x (QT ),

um → u in L p(QT ), ∀1 < p < 10
3 ,

Pm ⇀ P in L
5
3 (QT ),

Qm ⇀ Q in L2
t H2

x (QT ),

Qm → Q in Lr
t Ls

x (QT ), ∀1 < r, s < ∞.
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From (3.38), we can also deduce that for any 0 < δ < T ,

∥∥GBM(Q)
∥∥

L∞(T3×[δ,T ]) ≤ (Cδ− 5
2 + eT )

∥∥GBM(Q0)
∥∥

L1(T3)
+ κ2eT . (3.39)

By the logarithmic divergence of GBM as Q ∈ D → ∂D and (3.39), we conclude
that for any δ > 0, there exists ε0 = ε0(δ, T ) > 0 such that

Q(x, t) ∈ Dε0 , ∀(x, t) ∈ T
3 × [δ, T ], (3.40)

where

Dε0 :=
{

Q ∈ D : −1

3
+ ε0 ≤ λi (Q(x, t)) ≤ 2

3
− ε0, i = 1, 2, 3

}
. (3.41)

From (3.38) and the quadratic growth property of Gm
BM, we also see that there

exists C0 > 0, independent of m, such that for m ≥ m0,

|Qm(x, t)| ≤ C0, (x, t) ∈ T
3 × [δ, T ]. (3.42)

We now claim that

f m
BM(Qm) ⇀ fBM(Q) in L2(T3 × [δ, T ]), as m → ∞. (3.43)

To see this, first observe that (3.36) yields that f m
BM(Qm) is uniformly bounded in

L2(T3 × [0, T ]). Thus there exists a function f̄ ∈ L2(T3 × [0, T ]) such that
f m
BM(Qm) ⇀ f̄ ∈ L2(T3 × [0, T ]).

Nowwe want to identify f̄ . It follows from Qm → Q in L2(T3×[0, T ]) that there
exists Em ⊂ T

3 × [0, T ], with |Em | → 0, such that

Qm → Q, uniformly in T3 × [0, T ] \ Em,

which, combined with Q(T3 × [δ, T ]) ⊂ Dε0 , yields that for sufficiently large m,

Qm(T3 × [δ, T ] \ Em) ⊂ D ε0
2
.

Since f m
BM → fBM in W 1,∞(D ε0

2
), we conclude that

f m
BM(Qm) → fBM(Q), uniformly in T

3 × [δ, T ] \ Em .

Therefore f̄ = fBM(Q) for a.e. (x, t) ∈ T
3 × [0, T ], and (3.43) holds.

From (3.43) and �Qm ⇀ �Q in L2(T3 × [0, T ]), as m → ∞, we see that

�Qm − f m
BM(Qm) ⇀ �Q − fBM(Q) in L2(T3 × [0, T ]), as m → ∞,

With all the estimates in hand, it is rather standard to show that passing to
the limit in (3.34), as m → ∞ first and δ → 0 second, yields that (u, P, Q)

is a weak solution of (3.1). While passing to the limit in the local inequality for
(um, Pm, Qm), as m → ∞ first and then δ → 0, we can also verify that (u, P, Q)

satisfies the local energy inequality (1.12) with fbulk(Q) replaced by fBM(Q). ��



774 H. Du et al.

4. Maximum Principles

In this section, we will show the maximum principles for any weak solution
(u, Q) of (1.6) and (1.7) in R

3 with the Landau-De Gennes potential function
FLdG(Q) (see also [15,16]), and in T3 with the Ball–Majumdar potential function
FBM(Q) (see also [38]). These will play important roles in the proof of partial
regularity of suitable weak solutions to (1.6) in the Sects. 5 and 6 below.

Lemma 4.1. For (u0, Q0) ∈ H×H1(R3,S(3)
0 ), let (u, Q) ∈ L2

t H1
x (R3×R+,R3)×

L2
t H2

x (R3 × R+,S(3)
0 ) be a weak solution of (1.6)–(1.7). If, in addition, Q0 ∈

L∞(R3,S
(3)
0 ) and c > 0, then there exists a constant C > 0, depending on

‖Q0‖L∞(R3) and a, b, c, such that

|Q(x, t)| ≤ C, ∀(x, t) ∈ R
3 × R+. (4.1)

Proof. This is a well-known fact. The readers can find the proof in [15,16] or [30].
��

Next we will give a proof of Lemma 3.2, which guarantees that Q lies inside
a strictly physical subdomain Dε0 so that FBM(Q) becomes regular and hence
fBM(Q) is bounded.

Proof of Lemma 3.2. It follows from the chain rule and the equation (3.34)1 that
Gm

BM(Qm) satisfies, in the weak sense, that

∂t (G
m
BM(Qm)) + um · ∇(Gm

BM(Qm))

= �(Gm
BM(Qm)) − tr∇2

Q Gm
BM(Qm)(∇Qm ,∇Qm) − f m

BM(Qm)〈∇Q Gm
BM(Qm)〉,

≤ �(Gm
BM(Qm)) − (〈∇Q Gm

BM(Qm) − κ Qm)〈∇Q Gm
BM(Qm)

≤ �(Gm
BM(Qm)) + κ2

2
|Qm |2

(4.2)

inT3×(0, T ]. Indeed, this canbeobtainedbymultiplying (3.34)1 by 〈∇Q Gm
BM(Qm)〉

and using the fact Gm
BM is a smooth convex function. Therefore Gm

BM(Qm) ∈
L∞

t H1
x (T3 × [0, T ]) satisfies, in the weak sense, that

∂t (G
m
BM(Qm)) + um · ∇(Gm

BM(Qm))

≤ �(Gm
BM(Qm)) + κ2

2
|Qm |2,

in T
3 × (0, T ]. (4.3)

It follows from (3.35) and (3.37) that Qm ∈ L2
t H2

x (T3 × [0, T ]). In particular, by
Sobolev’s embedding theorem, we have that

∥∥Qm
∥∥

L2
t L∞

x (T3×[0,T ])

≤ C
(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), , g0, κ

)
. (4.4)

Since the drifting coefficient um in (4.3) is not smooth and Qm is not bounded
in T3 × [0, T ], we can not directly apply the argument of §8 in [38] to prove 3.38.



Suitable Weak Solutions for the Co-rotational Beris–Edwards System 775

Here we proceed it by first considering an auxiliary equation with mollifying um

as the drifting coefficient. More precisely, let um
ε be a standard ε-mollification on

T
3 × [0, T ] for 0 < ε < 1. Then um

ε ∈ C∞(T3 × [0, T ]) satisfies divum
ε = 0 and

um
ε → um in L2

t H1
x (T3 × [0, T ]), as ε → 0.

Also let gm
ε be ε-mollifications of |Qm |2 in T3 ×[0, T ], and hm

ε be ε-mollifications
of Gm

BM(Q0) in T3. Then it follows from (4.4) that for all m ≥ m0,

∥∥gm
∥∥

L2
t L∞

x (T3×[0,T ]) ≤ ∥∥Qm
∥∥2

L2
t L∞

x (T3×[0,T ]),∥∥hm
ε

∥∥
L1(T3)

≤ ∥∥GBM(Q0)
∥∥

L1(T3)
,

and

gm
ε → |Qm |2 in L3(T3 × [0, T ]), hm

ε → Gm
BM(Q0) in L1(T3), as ε → 0.

Now let vm
ε ∈ C∞(T3 × [0, T ]) be the unique solution of
⎧⎨
⎩

∂tv
m
ε + um

ε · ∇vm
ε = �vm

ε + κ2

2
gm
ε in T

3 × [0, T ],
vm
ε = hm

ε on T
3 × {0}.

(4.5)

For vm
ε , we will modify the argument as illustrated in [38], §8, to achieve that for

0 < t < T ,

∥∥vm
ε (·, t)

∥∥
L∞(T3)

≤ Ct−
5
2
∥∥GBM(Q0)

∥∥
L1(T3)

+ C0. (4.6)

To show (4.6), decompose vm
ε = v1 + v2, where v1 solves

⎧⎨
⎩

∂tv1 + um
ε · ∇v1 = �v1, in T

3 × [0, T ],
v1 = hm

ε −
∫

T3
hm

ε , on T
3 × {0}, (4.7)

and v2 solves

⎧⎪⎨
⎪⎩

∂tv2 + um
ε · ∇v2 = �v2 + κ2

2
gm
ε , in T

3 × [0, T ],
v2 =

∫

T3
hm

ε , on T
3 × {0}.

(4.8)

For v1, we can apply the L1 → L∞ estimate for advection-diffusion equations on
compact manifold [7] as in Lemma 8.1 of [38] to conclude that

∥∥v1(·, t)
∥∥

L∞(T3)
≤ Ct−

5
2
∥∥hm

ε −
∫

T3
hm

ε

∥∥
L1(T3)

≤ Ct−
5
2
∥∥GBM(Q0)

∥∥
L1(T3)

(4.9)

for 0 < t < T .
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While for v2, we can multiply (4.8)1 by |v2|p−2v2, p > 2, and integrate the
resulting equation over T3 to get

1

p

d

dt

∥∥v2(t)
∥∥p

L p(T3)
≤ κ2

2

∥∥gm
ε (t)

∥∥
L p(T3)

∥∥v2(t)
∥∥p−1

L p(T3)

≤ κ2

2

∣∣T3
∣∣ 1p ∥∥gm

ε (t)
∥∥

L∞(T3)

∥∥v2(t),

so that

d

dt

∥∥v2(t)
∥∥

L p(T3)
≤ κ2

2

∣∣T3
∣∣ 1p ∥∥gm

ε (t)
∥∥

L∞(T3)
,

and hence

∥∥v2(t)
∥∥

L p(T3)
≤ ∥∥v2(0)

∥∥
L p(T3)

+ κ2

2

∣∣T3
∣∣ 1p
∫ T

0

∥∥gm
ε (t)

∥∥
L∞(T3)

dt, ∀0 < t ≤ T .

Sending p → ∞ and applying (4.4), we obtain that for 0 < t < T ,∥∥v2(t)
∥∥

L∞(T3)

≤ C‖hm
ε ‖L1(T3) + κ2

2

∫ T

0

∥∥Qm(t)
∥∥2

L∞(T3)
dt

≤ ∥∥GBM(Q0)
∥∥

L1(T3)
+ C

(
‖u0‖L2(T3), ‖Q0‖H1(T3), ‖FBM(Q0)‖L1(T3), , g0, κ

)
.

(4.10)

Putting (4.9) and (4.10) together yields (4.6).
It is not hard to see that as ε → 0, there exists vm ∈ L∞

t L2
x ∩L2

t H1
x (T3×[0, T ])

such that vm
ε → vm in L2(T3 × [0, T ]). Passing to the limit in the equation (4.5),

we see that vm is a weak solution of
⎧⎨
⎩

∂tv
m + um · ∇vm = �vm + κ2

2
|Qm |2 in T

3 × [0, T ],
vm = Gm

BM(Q0) on T
3 × {0}.

(4.11)

Moreover, passing to the limit of (4.6), we have that for any 0 < t < T ,

∥∥vm(·, t)
∥∥

L∞(T3)
≤ Ct−

5
2
∥∥GBM(Q0)

∥∥
L1(T3)

+ C0. (4.12)

Now observe that by the comparison principle on (4.3), we know that for m ≥ m0,
it holds.

Gm
BM(Qm)(x, t) ≤ vm(·, t) ≤ Ct−

5
2
∥∥GBM(Q0)

∥∥
L1(T3)

+ C0,

for all (x, t) ∈ T
3 × [0, T ]. This, combined with (G2), yields (3.38). ��

Note that passing to the limit in (3.38), the suitable weak solution (u, P, Q) to
(3.1), constructed in §3.2, satisfies that for any 0 < δ < T ,

∥∥GBM(Q)
∥∥

L∞(T3×[δ,T ]) ≤ C0δ
− 5

2
∥∥GBM(Q0)

∥∥
L1(T3)

+ C0. (4.13)

This completes the proof of Lemma 3.2. ��
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5. Partial Regularity; Part I

This section is devoted to establishing an ε0-regularity for suitable weak solu-
tions (u, Q) of (1.6) in � × (0,∞) in terms of renormalized L3-norm of (u, Q).
The argument we will present is based on a blowing up argument, motivated by that
of Lin [23] on the Navier–Stokes equation, which works equally well for both the
Landau–De Gennes potential FLdG and the Ball–Majumdar potential FBM. More
precisely, we want to establish the following property:

Lemma 5.1. For any M > 0, there exist ε0 > 0, 0 < τ0 < 1
2 , and C0 > 0,

depending on M, such that if (u, Q, P) is a suitable weak solution of (1.6) in
� × (0,∞), which satisfies, for z0 = (x0, t0) ∈ � × (r2,∞) and r > 0,

{
|Q| ≤ M if Fbulk = FLdG and � = R

3,

|GBM(Q)| ≤ M if Fbulk = FBM and � = T
3,

in Pr (z0), (5.1)

and

r−2
∫

Pr (z0)
(|u|3 + |∇Q|3) dxdt +

(
r−2

∫

Pr (z0)
|P| 32 dxdt

)2 ≤ ε30, (5.2)

then

(τ0r)−2
∫

Pτ0r (z0)
(|u|3 + |∇Q|3) dxdt +

(
(τ0r)−2

∫

Pτ0r (z0)
|P| 32 dxdt

)2

≤ 1

2
max

{
r−2

∫

Pr (z0)
(|u|3 + |∇Q|3) dxdt

+
(

r−2
∫

Pr (z0)
|P| 32 dxdt

)2
, C0r3

}
. (5.3)

Proof. We prove it by contradiction. Suppose that the conclusion were false. Then
there exists M0 > 0 such that for any τ ∈ (0, 1

2 ), we can find εi → 0, Ci → ∞,
and ri > 0, and zi = (xi , ti ) ∈ R

3 × (r2i ,∞) such that

{
|Q| ≤ M0 if Fbulk = FLdG,

|GBM(Q)| ≤ M0 if Fbulk = FBM,
in Pri (zi ), (5.4)

and

r−2
i

∫

Pri (zi )

(|u|3 + |∇Q|3) dxdt + (
r−2

i

∫

Pri (zi )

|P| 32 dxdt
)2 = ε3i , (5.5)

but

(τri )
−2
∫

Pτri (zi )

(|u|3 + |∇Q|3) dxdt + (
(τri )

−2
∫

Pτri (zi )

|P| 32 dxdt
)2

>
1

2
max

{
ε3i , Cir

3
i

}
.

(5.6)



778 H. Du et al.

From (5.6), we see that

Cir
3
i ≤ 2(τri )

−2
∫

Pτri (zi )

(|u|3 + |∇Q|3) dxdt + 2
(
(τri )

−2
∫

Pτri (zi )

|P| 32 dxdt
)2

≤ 2τ−4

{
r−2

i

∫

Pri (zi )

(|u|3 + |∇Q|3) dxdt + (
r−2

i

∫

Pri (zi )

|P| 32 dxdt
)2
}

= 2τ−4ε3i ,

so that

ri ≤ ( 2ε3i
Ciτ 4

) 1
3 → 0.

Also from (5.4), we know that there exist C0 > 0 and δ0 > 0 such that, in the case
Fbulk = FBM,

Q(z) ∈ Dδ0 and | fBM(Q(z))| + |∇Q fBM(Q(z))| ≤ C0, ∀z ∈ Pri (zi ). (5.7)

Define a rescaled sequence of maps

(ui , Qi , Pi )(x, t) = (
riu, Q, r2i P

)
(xi + ri x, ti + r2i t), ∀x ∈ R

3, t > −1.

Then (ui , Qi , Pi ) is a weak solution of the scaled Beris–Edwards system
⎧
⎪⎨
⎪⎩

∂t Qi + ui · ∇Qi − [ω(ui ), Qi ] = �Qi − r2i fbulk(Qi ),

∂tui + ui · ∇ui + ∇ Pi = �ui − ∇Qi ·�Qi − div[�Qi , Qi ],
divui = 0,

(5.8)

where

ω(ui ) = ∇ui − (∇ui )
T

2
.

Moreover, (ui , Qi , Pi ) satisfies
∫

P1(0)
(|ui |3 + |∇Qi |3) dxdt +

(∫

P1(0)
|Pi | 32 dxdt

)2

= ε3i , (5.9)

and

τ−2
∫

Pτ (0)
(|ui |3 + |∇Qi |3) dxdt +

(
τ−2

∫

Pτ (0)
|Pi | 32 dxdt

)2

>
1

2
max

{
ε3i , Cir

3
i

}
. (5.10)

Define the blowing-up sequence (̂ui , Q̂i , P̂i ) : P1(0) → R
3 × S3

0 × R, of
(ui , Qi , Pi ), by letting

(̂ui , Q̂i , P̂i )(z) =
(
ui

εi
,

Qi − Qi

εi
,

Pi

εi

)
(z), ∀z = (x, t) ∈ P1(0),
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where

Qi = 1

|P1(0)|
∫

P1(0)
Qi

denotes the average of Qi over P1(0). Then (̂ui , Q̂i , P̂i ) satisfies⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫

P1(0)
Q̂i = 0,

∫

P1(0)
(|̂ui |3 + |∇ Q̂i |3) dxdt +

(∫

P1(0)
|P̂i |

3
2 dxdt

)
g2 = 1,

τ−2
∫

Pτ (0)
(|̂ui |3 + |∇ Q̂i |3) dxdt +

(
τ−2

∫

Pτ (0)
|P̂i |

3
2 dxdt

)2
>

1

2
max

{
1, Ci

r3i
ε3i

}
,

(5.11)

and (̂ui , Q̂i , P̂i ) is a suitable weak solution of the following scaled Beris–Edwards
equation:

⎧⎪⎨
⎪⎩

∂t Q̂i + εi ûi · ∇ Q̂i − [ω(̂ui ), Qi ] = �Q̂i − r2i
εi

fbulk(Qi ),

∂t ûi + εi ûi · ∇ûi + ∇ P̂i = �ûi − εi∇ Q̂i�Q̂i + div[Qi ,�Q̂i ]
div̂ui = 0.

(5.12)

From (5.11), we assume that there exists

(̂u, Q̂, P̂) ∈ L3(P1(0)) × L3
t W 1,3

x (P1(0)) × L
3
2 (P1(0))

such that, after passing to a subsequence,

(̂ui , Q̂i , P̂i ) ⇀ (̂u, Q̂, P̂) in L3(P1(0)) × L3
t W 1,3

x (P1(0)) × L
3
2 (P1(0)).

It follows from (5.11) and the lower semicontinuity that
∫

P1(0)
(|̂u|3 + |∇ Q̂|3)

+(
∫

P1(0)
|P̂| 32 )2 ≤ 1. (5.13)

Moreover, we claim that
∥∥̂ui

∥∥
L∞

t L2
x (P 1

2
(0))∩L2

t H1
x (P 1

2
(0)) + ∥∥∇ Q̂i

∥∥
L∞

t L2
x (P 1

2
(0))∩L2

t H1
x (P 1

2
(0)) ≤ C < ∞.

(5.14)

To show (5.14), choose a cut-off function φ ∈ C∞
0 (P1(0)) such that

0 ≤ φ ≤ 1, φ ≡ 1 on P 1
2
(0), and |∂tφ| + |∇φ| + |∇2φ| ≤ C.

Define

φi (x, t) = φ
( x − xi

ri
,

t − ti
r2i

)
, ∀(x, t) ∈ R

3 × (0,∞).
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Applying Lemma 2.2 with φ replaced by φ2
i and applying Hölder’s inequality, we

would arrive at

sup

ti − r2i
4 ≤t≤ti

∫

Bri (xi )

(|u|2 + |�Q|2)φ2
i dx +

∫

Pri (zi )

(|∇u|2 + |∇2Q|2)φ2
i dxdt

� C
[ ∫

Pri (zi )

(|u|2 + |∇Q|2)|(∂t + �)φ2
i | dxdt

+
∫

Pri (zi )

(|u|2 + |∇Q|2 + |P|)|u||∇φ2
i | dxdt +

∫

Pri (zi )

|∇Q|2||∇2(φ2
i )|

+
∫

Pri (zi )

(|�Q| + | fbulk(Q)|)|u||∇φ2
i | + |∇Q fbulk(Q)||∇Q|2φ2

i dxdt
]
.

Observe that∫

Pri (zi )

|�Q||u||∇φ2
i | dxdt ≤ 1

2

∫

Pri (zi )

|�Q|2φ2
i dxdt+C

∫

Pri (zi )

|u|2|∇φi |2 dxdt.

Substituting this into the above inequality and performing rescaling, we obtain that

sup
− 1

4≤t≤0

∫

B 1
2
(0)

(|̂ui |2 + |�Q̂i |2) dx +
∫

P 1
2
(0)

(|∇ûi |2 + |∇2 Q̂i |2) dxdt

� C
[ ∫

P1(0)
(|̂ui |2 + |∇ Q̂i |2) + (εi |̂ui |2 + εi |∇ Q̂i |2 + |P̂i |)|̂ui | dxdt

]

+C
[ ∫

P1(0)

r2i
εi

|̂ui | dxdt + r2i

∫

P1(0)
|∇ Q̂i |2 dxdt

]

� C(1 + r2i
εi

+ r2i ) ≤ C. (5.15)

This yields (5.14). From (5.14), we may also assume that

(̂ui , Q̂i ) ⇀ (̂u, Q̂) in L2
t H1

x (P 1
2
(0)) × L2

t H2
x (P 1

2
(0)). (5.16)

Since ri ≤ εi and by (5.7) |Qi | ≤ M0 and | fbulk(Qi )| + |∇Q fbulk(Qi )| ≤ C0 in

P1(0), there exists a constant Q ∈ S(3)
0 , with |Q| ≤ M0, such that, after passing to

a subsequence,

Qi → Q in L3(P 1
2
(0)),

and

r2i
εi

fbulk(Qi ) → 0 in L∞(P 1
2
(0)).

Hence (̂u, Q̂, P̂) : P 1
2
(0) → R

3 × S(3)
0 × R solves the linear system:

⎧⎪⎨
⎪⎩

∂t Q̂ − �Q̂ = [ω(̂u), Q],
∂t û − �û + ∇ P̂ = div([Q,�Q̂]),
div̂u = 0,

(5.17)
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Applying Lemma 5.2 and (5.13), we know that

(̂u, Q̂) ∈ C∞(P 1
4
), P̂ ∈ L∞([−(

1

4
)2, 0], C∞(B 1

4
(0)))

satisfies

τ−2
∫

Pτ (0)
(|̂u|3 + |∇ Q̂|3) dxdt + (

τ−2
∫

Pτ (0)
|P̂| 32 dxdt

)2

≤ Cτ 3
∫

P 1
2
(0)

(|̂u|3 + |∇ Q̂|3) dxdt + ( ∫

P1(0)
|P̂| 32 )2

≤ Cτ 3, ∀ τ ∈ (0,
1

8
). (5.18)

We now claim that

(̂ui ,∇ Q̂i ) → (̂u,∇ Q̂) in L3(P 3
8
(0)). (5.19)

To prove (5.19), first observe that (5.15) and the equation (5.12) imply that

∂t ûi ∈ (
L2

t H−1 + L2
t L

6
5
x + L

3
2
t W

−1, 32
x

)(
P 3

8
(0)

); ∂t Q̂i ∈ L
3
2
t L

3
2
x (P 3

8
(0)),

enjoy the following uniform bounds:
∥∥∂t ûi

∥∥(
L2

t H−1
x +L2

t L
6
5
x +L

3
2
t W

−1, 32
x

)
(P 3

8
(0))

≤ C
[‖̂ui ‖L∞

t L2
x (P 1

2
(0)) + ‖∇ûi ‖L2

t L2
x (P 1

2
(0)) + ‖∇ Q̂i ‖2L3(P 1

2
(0)) + ‖∇2 Q̂i ‖L2(P 1

2
(0))

]

≤ C,

and
∥∥∂t Q̂i

∥∥
L

3
2 (P 3

8
(0))

≤ C
[‖Q̂i‖L2

t H1
x (P 1

2
(0)) + ‖∇ûi‖L2(P 1

2
(0)) + ‖∇ Q̂i‖L3(P 1

2
(0)) + ‖̂ui‖L3(P 1

2
(0))

]

≤ C.

Thus we can apply Aubin-Lions’ compactness Lemma to conclude the L3-strong
convergence as in (5.19).

It follows from the L3-strong convergence property (5.19) that for any τ ∈
(0, 1

8 ),

τ−2
∫

Pτ (0)
(|̂ui |3 + |∇ Q̂i |3)

= τ−2
∫

Pτ (0)
(|̂u|3 + |∇ Q̂|3) + τ−2o(1) ≤ Cτ 3 + τ−2o(1), (5.20)

where o(1) stands for a quantity such that lim
i→∞ o(1) = 0.
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Now we need to estimate the pressure P̂i . First, by taking divergence of the
second equation (5.8)2, we see that P̂i solves

�P̂i = −εidiv
2[̂ui ⊗ ûi + (∇ Q̂i ⊗ ∇ Q̂i − 1

2
|∇ Q̂i |2 I3)

]
in B1, (5.21)

where we have applied Lemma 2.3 to guarantee that

div2[Qi ,�Q̂i ] = 0 in B1.

We need to show that

τ−2
∫

Pτ (0)
|P̂i | 32 dxdt ≤ Cτ−2(εi + o(1)) + Cτ, ∀i ≥ 1. (5.22)

To prove (5.22), let η ∈ C∞
0 (B1(0)) be a cut-off function such that η ≡ 1 in

B 3
8
(0), 0 ≤ η ≤ 1. For any −( 38 )

2 ≤ t ≤ 0, define P̂(1)
i (·, t) : R3 → R by letting

P̂(1)
i (x, t) =

∫

R3
∇2

x G(x − y)η(y)εi [̂ui ⊗ ûi

+(∇ Q̂i ⊗ ∇ Q̂i − 1

2
|∇ Q̂i |2 I3)](y, t) dy, (5.23)

where G(·) is the fundamental solution of −� in R
3. Then it is easy to check that

P̂(2)
i (·, t) = (P̂i − P̂(1)

i )(·, t) satisfies

− �P̂(2)
i (·, t) = 0 in B 3

8
(0). (5.24)

For P̂(1)
i , we can apply the Calderon-Zygmund theory to show that

∥∥P̂(1)
i

∥∥
L

3
2 (R3)

≤ Cεi
[‖̂ui‖2L3(B1(0))

+ ‖∇ Q̂i‖2L3(B1(0))

]
(5.25)

so that
∥∥P̂(1)

i

∥∥
L

3
2 (P 1

3
(0))

≤ Cεi (‖̂ui‖2L3(P1(0))
+ ‖∇ Q̂i‖2L3(P1(0))

)

≤ C(εi + o(1)). (5.26)

From the standard theory on harmonic functions, P̂(2)
i (·, t) ∈ C∞(B 1

2
(0)) satisfies

that for any 0 < τ < 1
4 ,

τ−2
∫

Pτ (0)
|P̂(2)

i | 32 ≤ Cτ

∫

P 1
3
(0)

|P̂(2)
i | 32 ≤ Cτ

[ ∫

P 1
3
(0)

(|P̂i | 32 + |P̂(1)
i | 32 )

≤ Cτ(1 + εi + o(1)). (5.27)

Putting (5.26) and (5.27) together, we obtain (5.22).
It follows from (5.20) and (5.22) that there exist sufficiently small τ0 ∈ (0, 1

4 )

and sufficiently large i0, depending on τ0, such that for any i ≥ i0, it holds that

τ−2
0

∫

Pτ0 (0)
(|̂ui |3 + |∇ Q̂i |3) dxdt + (

τ−2
0

∫

Pτ0 (0)
|P̂i | 32 dxdt)2 ≤ 1

4
.

This contradicts (5.11). The proof of Lemma 5.1 is completed. ��
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We now need to establish the smoothness of the limit equation (5.17), namely,
are have

Lemma 5.2. Assume that (̂u, Q̂) ∈ (L∞
t L2

x ∩ L2
t H1

x )(P 1
2
)×(L∞

t H1
x ∩ L2

t H2
x )(P 1

2
)

and P̂ ∈ L
3
2 (P 1

2
) is a weak solution of the linear system (5.17), then (̂u, Q̂) ∈

C∞(P 1
4
), and the estimate

θ−2
∫

Pθ

(|̂u|3 + |∇ Q̂|3 + |P̂| 32 ) ≤ Cθ3
∫

P 1
2

(|̂u|3 + |∇ Q̂|3 + |P̂| 32 ) (5.28)

holds for any θ ∈ (0, 1
8 ).

Proof. The regularity of the limit equation (5.17) doesn’t follow from the standard
theory of linear parabolic equations in [20], since the source term div(Q�Q̂ −
�Q̂ Q) in the second equation of (5.17) depends on third order derivatives of Q̂.
This is based on higher order energy methods, for which the cancellation property,
as in the derivation of local energy inequality for suitable weak solutions of (1.6),
plays a critical role.

For nonnegative multiple indices α, β, and γ such that α = β + γ and γ is of
order 1, it is easy to see that (∇α Q̂,∇β û,∇β P̂) satisfies

⎧⎪⎨
⎪⎩

∂t (∇α Q̂) − �(∇α Q̂) = [ω(∇αû), Q],
∂t (∇β û) − �(∇β û) + ∇(∇β P̂) = div[Q,�(∇β Q̂)],
div(∇β û) = 0.

(5.29)

Nowwewant to derive an arbitrarily higher order local energy inequality for (5.29).
For any given φ ∈ C∞

0 (P 1
2
(0)), multiplying the first equation of (5.29) by ∇α Q̂φ2

and integrating over R3, we obtain that by summing over all γ ,

d

dt

∫

R3

1

2
|∇(∇β Q̂)|2φ2 +

∫

R3
|∇2(∇β Q̂)|2φ2

=
∫

R3

1

2
|∇(∇β Q̂)|2(∂t + �)φ2

+
∫

R3
[Q, ω(∇β û)] : (�(∇β Q̂)φ2 + ∇(∇β Q̂) · ∇φ2). (5.30)

Meanwhile, bymultiplying the second equation of (5.17) by∇β ûφ2 and integrating
over R3, we obtain that

d

dt

∫

R3

1

2
|∇β û|2φ2 +

∫

R3
|∇(∇β û)|2φ2

=
∫

R3

1

2
|∇β û|2(∂t + �)φ2 +

∫

R3
∇β P̂∇β û · ∇φ2

+
∫

R3
[Q,�(∇β Q̂)] : (∇(∇β û)φ2 + ∇β û ⊗ ∇φ2). (5.31)
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As in the above, we observe that

∫

R3
[[Q, ω(∇β û)] : �(∇β Q̂)φ2 + [Q,�(∇β Q̂)] : ∇(∇β û)φ2] = 0.

By integration by parts we have that

∫

R3
∇β P̂∇β û · ∇φ2 = (−1)|β|

∫

R3
û · ∇β(∇β P̂∇φ2). (5.32)

It follows from the second equation of (5.17) that P̂ solves

�P̂ = div2[Q,�Q̂] = 0, in B 1
2 (0),

where we have applied Lemma 2.3. Hence, by the standard regularity theory of
harmonic functions,

∫

B 3
8 (0)

|∇l P̂| 32 ≤ C
∫

B 1
2
(0)

|P̂| 32 , l = k, k + 1, ..., 2k, (5.33)

so that, by Young’s inequality, we can derive from (5.32) and (5.33) that

∣∣∣∣
∫

R3
∇β P̂∇β û · ∇φ2

∣∣∣∣ ≤ C
∫

B 1
2
(0)

(|̂u|3 + |P̂| 32 ).

Hence, by adding (5.30) and (5.31) together and then taking summation over all
β’s with |β| = k ≥ 0, we obtain that

d

dt

∫

R3

1

2
(|∇k û|2 + |∇k+1 Q̂|2)φ2 +

∫

R3
(|∇k+1û|2 + |∇k+2 Q̂|2)φ2

≤
∫

R3

1

2
(|∇k û|2 + |∇k+1 Q̂|2)(|∂t (φ

2)| + |∇2(φ2)|)

+C
∫

B 1
2
(0)

(|̂u|3 + |P̂| 32 )

+C
∫

R3

(|∇k+1û||∇k+1 Q̂| + |∇k û||∇k+2 Q̂|)|∇φ2|

≤
∫

R3

1

2
(|∇k û|2 + |∇k+1 Q̂|2)(|∂t (φ

2)| + |∇2(φ2)|)

+C
∫

B 1
2
(0)

(|̂u|3 + |P̂| 32 )

+1

2

∫

R3
(|∇k+1û|2 + |∇k+2 Q̂|2)φ2 + C

∫

R3

(|∇k û|2 + |∇k+1 Q̂|2)|∇φ|2,
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which implies that

d

dt

∫

R3
(|∇k û|2 + |∇k+1 Q̂|2)φ2 +

∫

R3
(|∇k+1û|2 + |∇k+2 Q̂|2)φ2

≤ C
∫

R3
(|∇k û|2 + |∇k+1 Q̂|2)(|∂t (φ

2)| + |∇2(φ2)|)

+C
∫

B 1
2
(0)

(|̂u|3 + |P̂| 32 )

+C
∫

R3

(|∇k û|2 + |∇k+1 Q̂|2)|∇φ|2. (5.34)

By choosing suitable test functions φ, it is not hard to see that (5.34) implies that
for k ≥ 0,

sup
− 1

16≤t≤0

∫

B 1
4
(0)

(|∇k û|2 + |∇k+1 Q̂|2) +
∫

P 1
4
(0)

(|∇k+1û|2 + |∇k+2 Q̂|2

≤ C
∫

P 3
8
(0)

(|∇k û|2 + |∇k+1 Q̂|2) + C
∫

P 1
2
(0)

(|̂u|3 + |P̂| 32 ). (5.35)

It is clear that with suitable adjustment of radius, applying (5.35) inductively on k
yields that

sup
− 1

16≤t≤0

∫

B 1
4
(0)

(|∇k û|2 + |∇k+1 Q̂|2) +
∫

P 1
4
(0)

(|∇k+1û|2 + |∇k+2 Q̂|2)

≤ C
∫

P 3
8
(0)

(|∇û|2 + |∇2 Q̂|2 + C
∫

P 1
2
(0)

(|̂u|3 + |P̂| 32 ), ∀k ≥ 1. (5.36)

With (5.36), we can apply the regularity theory for both the linear Stokes equa-
tion and the linear parabolic equation to conclude that (̂u, Q̂) ∈ C∞(P 1

4
(0)).

Furthermore, applying the elliptic estimate for the pressure equation (5.21) we
see that ∇k P̂ ∈ C0(P 1

4
(0)) for any k ≥ 1. For l ≥ 1, taking t-derivative ∂ l

t

of both sides of (5.21), we can also see that ∇k∂ l
t P̂ ∈ C0(P 1

4
(0)). Therefore

(̂u, Q̂, P̂) ∈ C∞(P 1
4
(0)) and the estimate (5.28) holds. This completes the proof

of Lemma 5.2. ��
Now we can iterate Lemma 5.1 and utilize the Riesz potential estimates in

Morrey spaces to obtain the following ε0-regularity:

Lemma 5.3. For any M > 0, there exists ε0 > 0, depending on M, such that if
(u, Q, P) is a suitable weak solution of (1.6) in � × (0,∞), which satisfies, for
z0 = (x0, t0) ∈ � × (r20 ,∞) and

{
|Q| ≤ M if Fbulk = FLdG and � = R

3,

|GBM(Q)| ≤ M if Fbulk = FBM and � = T
3,

in Pr0(z0), (5.37)
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and

r−2
0

∫

Pr0 (z0)
(|u|3 + |∇Q|3) dxdt +

(
r−2
0

∫

Pr0 (z0)
|P| 32 dxdt

)2 ≤ ε30, (5.38)

then for any 1 < p < ∞, (u, P,∇Q) ∈ L p(P r0
4
(z0)) and

∥∥(u, P,∇Q)
∥∥

L p(P r0
4

(z0))
≤ C(p, ε0, M). (5.39)

Proof. From (5.38), we have that

(r0
2

)−2
∫

P r0
2

(z)
(|u|3 + |∇Q|3) dxdt +

((r0
2

)−2
∫

P r0
2

(z)
|P| 32 dxdt

)2 ≤ 8ε30

(5.40)

holds for any z ∈ P r0
2
(z0). By applying Lemma 5.1 repeatedly on P r0

2
(z) for

z ∈ P r0
2
(z0), we have that C0 > 0 and τ0 ∈ (0, 1

2 ) such that for any k ≥ 1,

(τ k
0 r0)

−2
∫

P
τk
0 r0

(z)
(|u|3 + |∇Q|3) dxdt + (

(τ k
0 r0)

−2
∫

P
τk
0 r0

(z)
|P| 32 dxdt)2

≤ 2−k max

⎧⎨
⎩
(r0
2

)−2
∫

P r0
2

(z)
(|u|3 + |∇Q|3) dxdt

+
⎛
⎝(r0

2

)−2
∫

P r0
2

(z)
|P| 32 dxdt

⎞
⎠

2

,
C0r30

1 − 2τ 30

⎫⎪⎬
⎪⎭

. (5.41)

Therefore, for θ0 = ln 2
3| ln τ0| ∈ (0, 1

3 ), it holds that for any 0 < s < r0
2 and z ∈

P r0
2
(z0),

s−2
∫

Ps (z)
(|u|3 + |∇Q|3 + |P| 32 ) dxdt ≤ C(1 + ε30)

( s

r0

)3θ0 . (5.42)

By (5.37) and Lemma 3.2, there exists C > 0, depending on M , such that

|Q| + | fbulk(Q)| + |∇Q fbulk(Q)| ≤ C in Pr0(z0). (5.43)

Now we can apply the local energy inequality (1.12) for (u, P, Q) on P r0
2
(z), for

z ∈ P r0
2
(z0), to get that for 0 < s < r0

2 ,

s−1
∫

Ps (z)
(|∇u|2 + |�Q|2) dxdt

≤ C
[
(2s)−3

∫

P2s (z)
(|u|2 + |∇Q|2) + (2s)−2

∫

P2s (z)
(|u|3 + |∇Q|3 + |P| 32 )

+ (2s)−2
∫

P2s (z)
|u| + (2s)−1

∫

P2s (z)
|∇Q|2

]

≤ C(1 + ε30)
( s

r0

)2θ0 .

(5.44)
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Next we employ the estimate of Riesz potentials in Morrey spaces to prove
the smoothness of (u, P, Q) near z0, analogous to that by Huang–Wang [19],
Hineman–Wang [17], and Huang–Lin–Wang [18].

For any open set U ⊂ R
3 ×R, 1 ≤ p < ∞, and 0 ≤ λ ≤ 5, define the Morrey

space M p,λ(U ) by

M p,λ(U ) :=
{

f ∈ L p
loc(U ) : ∥∥ f

∥∥p
M p,λ(U )

= sup
z∈U,r>0

rλ−5
∫

Pr (z)
| f |p dxdt < ∞

}
.

It follows from (5.42) and (5.44) that there exists α ∈ (0, 1) such that

(u,∇Q) ∈ M3,3(1−α)
(
P r0

2
(z0)

)
, P ∈ M

3
2 ,3(1−α)

(
P r0

2
(z0)

)
,

(∇u,∇2Q) ∈ M2,4−2α(
P r0

2
(z0)

)
.

Write (3.1)1 as

∂t Q − �Q = f, f ≡ −u · ∇Q + [ω, Q] − fbulk(Q) ∈ M
3
2 ,3(1−α)

(
P r0

2
(z0)

)
.(5.45)

Let η ∈ C∞
0 (R4) be a cut off function of P r0

2
(z0) such that 0 ≤ η ≤ 1, η = 1

in P r0
2
(z0), |∂tη| + |∇2η| ≤ Cr−2

0 , Set w = η2(Q − Qz0,r0), where Qz0,r0 is the
average of Q over P r0

2
(z0). Then

∂tw − �w = F, F := η2 f + (∂tη
2 − �η2)(Q − Qz0,r0) − ∇η2 · ∇Q.(5.46)

We can check that F ∈ M
3
2 ,3(1−α)(R4) and that it satisfies

∥∥F
∥∥

M
3
2 ,3(1−α)

(R4)
≤ C(1 + ε0). (5.47)

Let � denote the heat kernel in R3. Then

|∇�|(x, t) ≤ Cδ−4((x, t), (0, 0)), ∀(x, t) �= (0, 0),

where δ(·, ·) denotes the parabolic distance on R
4. By the Duhamel formula, we

have that

|w(x, t)| ≤
∫ t

0

∫

R3
|∇�(x − y, t − s)||F(y, s)| dyds ≤ CI1(|F |)(x, t),

(5.48)

where Iβ is the Riesz potential of order β on R
4, β ∈ [0, 4], defined by

Iβ(g)(x, t) =
∫

R4

|g(y, s)|
δ5−β((x, t), (y, s))

dyds, ∀g ∈ L1(R4).

Applying the Riesz potential estimates (see [19] Theorem 3.1), we conclude that

∇w ∈ M
3(1−α)
1−2α ,3(1−α)(R4) and
∥∥∥∇w

∥∥∥
M

3(1−α)
1−2α ,3(1−α)

(R4)
≤ C

∥∥∥F
∥∥∥

M
3
2 ,3(1−α)

(R4)
≤ C(1 + ε0). (5.49)
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Since lim
α↑ 1

2

3(1 − α)

1 − 2α
= ∞, we conclude that for any 1 < p < ∞, ∇w ∈

L p(Pr0(z0)) and
∥∥∇w

∥∥
L p(Pr0 (z0))

≤ C(p, r0, ε0). (5.50)

Since Q − w solves

∂t (Q − w) − �(Q − w) = 0 in P r0
2
(z0),

it follows from the theory of heat equations that for any 1 < p < ∞,∇Q ∈ P r0
2
(z0)

and
∥∥∇Q

∥∥
L p(P r0

2
(z0))

≤ C(p, r0, ε0). (5.51)

We now proceed with the estimation of u. Let v : R3 × (0,∞) → R
3 solve the

Stokes equation
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂tv − �v + ∇ P

= −div
[
η2
(
u ⊗ u + (∇Q ⊗ ∇Q − 1

2 |∇Q|2 I3)
)]+ div

[
η2[Q,�Q]] in R

4+,

divv = 0 in R
4+,

v(·, 0) = 0 in R
3.

(5.52)

By using the Oseen kernel (see Leray [21]), an estimate of v can be given by

|v(x, t)| ≤ CI1(|X |)(x, t), ∀(x, t) ∈ R
3 × (0,∞), (5.53)

where

X = η2
[
u ⊗ u + (∇Q ⊗ ∇Q − 1

2
|∇Q|2 I3) + [Q,�Q]].

As above, we can check that X ∈ M
3
2 ,3(1−α)(R4) and

∥∥X
∥∥

M
3
2 ,3(1−α)

(R4)
≤ C

[
‖u‖2M3,3(1−α)(P r0

2
(z0))

+ ‖∇Q‖2M3,3(1−α)(P r0
2

(z0))

+ ‖�Q − fbulk(Q)‖M3,3(1−α)(P r0
2

(z0))

]

≤ C(1 + ε0).

Hence we conclude that v ∈ M
3(1−α)
1−2α ,3(1−α)(R4) and

∥∥∥v
∥∥∥

M
3(1−α)
1−2α ,3(1−α)

(R4)
≤ C

∥∥∥X
∥∥∥

M
3
2 ,3(1−α)

(R4)
≤ C(1 + ε0). (5.54)

As α ↑ 1
2 , we conclude that for any 1 < p < ∞, v ∈ L p(Pr0(z0)) and

∥∥v∥∥L p(Pr0 (z0))
≤ C(p, r0, ε0). (5.55)
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Note that u − v solves the linear homogeneous Stokes equation in P r0
2
(z0):

∂t (u − v) − �(u − v) + ∇ P = 0, div(u − v) = 0 in P r0
2
(z0).

Then u− v ∈ L∞(P r0
4
(z0)). Therefore for any 1 < p < ∞, u ∈ L p(P r0

4
(z0)) and

∥∥u∥∥L p(P r0
4

(z0)
≤ C(p, r0, ε0). (5.56)

For P , since it satisfies the Poisson equation, for t0 − r20
4 ≤ t ≤ t0,

− �P = div2
[
u ⊗ u + (∇Q ⊗ ∇Q − 1

2
|∇Q|2 I3)

]
in B r0

2
(x0). (5.57)

Hence P ∈ L p(P r0
4
(z0)) and satisfies the (5.39). The proof is now complete. ��

The higher order regularity of (3.1) does not follow from the standard theory,
since the equation for u involves ∇3Q and the equation for Q involves ∇u. It turns
out that the higher order regularity of (3.1) can be obtained through higher oder
energy methods. Roughly speaking, if (u, P,∇Q) is in L p for any 1 < p < ∞,
then (3.1) can be viewed as a perturbed version of the linear equation (5.17) with
controllable error terms. Here higher order versions of the cancellation properties
(1.13) and (1.16) in the local energy inequality (1.12) also plays an important role.
This kind of idea has been previously employed by Huang-Lin-Wang (see [18]
Lemma 3.4) for general Ericksen-Leslie systems in dimension two.More precisely,
we have

Lemma 5.4. Under the same assumptions as Lemma 5.3, we have that for any
k ≥ 0, (∇ku,∇k+1Q) ∈ (

L∞
t L2

x ∩ L2
t H1

x

)
(P 1+2−(k+1)

2 r0
(z0)) and the following

estimates hold:

sup

t0−
(

(1+2−(k+1))
2 r0

)2≤t≤t0

∫

B 1+2−(k+1)
2 r0

(x0)
(|∇ku|2 + |∇k+1Q|2) dx

+
∫

P 1+2−(k+1)
2 r0

(z0)
(|∇k+1u|2 + |∇k+2Q|2 + |∇k P| 53 ) dxdt

≤ C(k, r0, )ε0.

(5.58)

In particular, (u, Q) is smooth in P r0
4
(z0).

Proof. For simplicity, assume z0 = (0, 0) and r0 = 8. (5.58) can be proved by an
induction on k. It is clear that when k = 0, (5.58) follows directly from the local
energy inequality (1.12). Here we indicate how to prove (5.58) for k = 1. First,
recall from Lemma 5.3 that, for any i ∈ N

+ and 1 < p < ∞,
∥∥Q

∥∥
L∞(P2)

+ ∥∥∇ i fbulk(Q)
∥∥

L∞(P2)

≤ C(i, ε0),
∥∥(u, P,∇Q)

∥∥
L p(P2)

≤ C(p)ε0. (5.59)
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Taking the spatial derivative of (1.6)1, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t Qα + u · ∇Qα + uα · ∇Q − [ωα, Q] − [ω, Qα]
= �Qα − ( fbulk(Q))α,

∂tuα + u · ∇uα + uα · ∇u + ∇ Pα

= �uα − ∇Q·�Qα − ∇Qα·�Q + div[Q,�Q]α,

divuα = 0,

in P1. (5.60)

Here ωα = ω(uα). Let η ∈ C∞
0 (B2) be such that

0 ≤ η ≤ 1, η ≡ 1 in B1+2−2 , η ≡ 0 out B1+2−1 , |∇η| + |∇2η| ≤ 16.

Taking ∇ of (5.60)1 and multiplying it by ∇Qαη2, and multiplying (5.60)2 by
∇uαη2, and then, integrating the resulting equations over B2

2, we obtain that

1

2

d

dt

∫

�
|∇2Q|2η2 −

∫

R3
(uα · ∇)Q · �Qαη2 −

∫

�
(u · ∇)Qα · (�Qαη2 + ∇Qα∇η2)

−
∫

�
(uα · ∇)Q · ∇Qα∇η2 −

∫

�
[Q, ωα] · (�Qαη2 + ∇Qα∇η2)

=
∫

�

[[Qα, ω] − (�Qα − ( fbulk(Q))α)
] · (�Qαη2 + ∇Qα∇η2),

and

1

2

d

dt

∫

�
|∇u|2η2 −

∫

�

|∇u|2
2

u · ∇η2 +
∫

�
(uα · ∇)u · uαη2 −

∫

�
Pαuα · ∇η2

= −
∫

�
(|∇2u|2η2 − |∇u|2

2
�η2) −

∫

�
((uα · ∇)Q · �Qαη2 + (uα · ∇)Qα · �Qη2)

−
∫

�
[Qα, �Q] · (∇uαη2 + uα ⊗ ∇η2) −

∫

�
[Q, �Qα] · (∇uαη2 + uα ⊗ ∇η2).

Adding these two equations together and regrouping terms, and using the cancel-
lation identity

∫

�

[Q, ωα] · �Qαη2 =
∫

�

[Q,�Qα] · ∇uαη2,

1 Strictly speaking, we need to take finite quotient D j
h of (1.6) ( j = 1, 2, 3) and then send

h → 0.
2 Strictly speaking, we need tomultiply�(D j

h Q)η2 and∇(D j
hu)η2 and then send h → 0.
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we arrive at

1

2

d

dt

∫

�
(|∇u|2 + |∇2Q|2)η2 +

∫

�
(|∇2u|2 + |�∇Q|2)η2

=
∫

�
[(u · ∇)Qα · (�Qαη2 + ∇Qα∇η2) + (uα · ∇)Q · ∇Qα∇η2]

+
∫

�
([Q, ωα] − �Qα) : ∇Qα∇η2

+
∫

�

([Qα, ω] + ( fbulk(Q))α
) : (�Qαη2 + ∇Qα∇η2)

+
∫

�
[ |∇u|2

2
(�η2 + u · ∇η2) − uα · (∇u · uα + ∇Qα : �Q)η2 + Pαuα · ∇η2]

−
∫

�
[Qα, �Q] : (∇uαη2 + uα ⊗ ∇η2) −

∫

�
[Q,�Qα] : uα ⊗ ∇η2

:=
6∑

i=1

Ai .

We can estimate the Ai ’s separately as follows:

|A6| ≤ 1

16

∫

�
|�∇Q|2η2 + C

∫

�
(|∇Q|2η2 + |∇u|2(η2 + |∇η|2),

|A5| ≤ 1

16

∫

�
|∇2u|2η2 + C

∫

�
|∇Q|2|�Q|2η2 + C

∫

�
|∇u|2|∇η|2,

|A4| ≤ 1

8

∫

�
(|∇2u|2 + |�∇Q|2)η2 + C

∫

�
[|∇u|2|�η2| + |u|2(|∇u|2 + |�Q|2)η2]

+C
∫

�
(|∇u|2 + |�Q|2)|∇η|2 + C

∫

�
(|P|2|∇η|2 + |P||∇u||�η2|),

|A3| ≤ 1

16

∫

�
|�∇Q|2η2 + C

∫

�
|∇Q|2(|∇u|2 + |�Q|2)η2

+C
∫

�
(|∇Q|2η2 + |∇u|2|∇η|2),

|A2| ≤ 1

16

∫

�
|�∇Q|2η2 + C

∫

�
(|∇u|2 + |�Q|2)|∇η|2,

|A1| ≤ 1

16

∫

�
|�∇Q|2η2 + C

∫

�
[(|u|2| + |∇Q|2)�Q|2η2 + (|∇u|2 + |�Q|2)|∇η|2].

Substituting these estimates on the Ai ’s into the above inequality, we obtain that

d

dt

∫

�

(|∇u|2 + |∇2Q|2)η2 +
∫

�

(|∇2u|2 + |�∇Q|2)η2

≤ C
∫

B1+2−1

(|u|2 + |∇Q|2 + |∇u|2 + |�Q|2 + |P|2)

+C
∫

�

(|u|2|∇u|2 + |u|2|�Q|2 + |∇Q|2|�Q|2 + |∇Q|2|∇u|2)η2.
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Now we want to estimate the second term in the right hand side. By Sobolev-
interpolation inequalities, we have

∫

�

|u|2|∇u|2η2

≤ ‖∇uη‖L2(�)‖∇uη‖L3(�)‖u‖2L12(B1+2−1 )

≤ C‖∇uη‖L2(�)‖∇uη‖
1
2
L2(�)

‖∇(∇uη)‖
1
2
L2(�)

‖u‖2L12(B1+2−1 )

≤ C‖∇uη‖L2(�)‖∇(∇uη)‖L2(�)‖u‖2L12(B1+2−1 )

≤ 1

8

∫

�

|∇2u|2η2 + C
∫

B1+2−1

|∇u|2 + C‖u‖4L12(B1+2−1 )

∫

�

|∇u|2η2,
∫

�

|u|2|�Q|2η2

≤ 1

8

∫

�

|�∇Q|2η2 + C
∫

B1+2−1

|�Q|2

+ C‖u‖4L12(B1+2−1 )

∫

�

|�Q|2η2,
∫

�

|∇Q|2|�Q|2η2

≤ 1

8

∫

�

|�∇Q|2η2 + C
∫

B1+2−1

|�Q|2

+ C‖∇Q‖4L12(B1+2−1 )

∫

�

|�Q|2η2,

and
∫

�

|∇Q|2|∇u|2η2 ≤ 1

8

∫

�

|∇u|2η2 + C
∫

B1+2−1

|∇u|2

+ C‖∇Q‖4L12(B1+2−1 )

∫

�

|∇u|2η2.

Substituting these estimates into the above inequality, we arrive at

d

dt

∫

�

(|∇u|2 + |∇2Q|2)η2 +
∫

�

(|∇2u|2 + |�∇Q|2)η2

≤ C
∫

B1+2−1

(|u|2 + |∇Q|2 + |∇u|2 + |�Q|2 + |P|2)

+C(1 + ‖(u,∇Q)‖12L12(B1+2−1 )
)

∫

�

(|∇u|2 + |∇2Q|2)η2. (5.61)

From (5.59), we can apply Gronwall’s inequality to (5.61) to show that (5.58) holds
for k = 1. For k ≥ 2, we can perform an induction argument as in [18] Lemma
3.4. We leave the details to interested readers.
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It is readily seen that by the Sobolev embedding theorem, Lemma 5.3 implies
that (∇ku,∇k+1Q) ∈ L∞(P r0

4
(z0)) for any k ≥ 1. This, combined with the theory

of the linear Stokes equation and the heat equation, would imply the smoothness
of (u, Q) in P r0

4
(z0). This completes the proof. ��

Applying Lemma 5.3, we can prove a weaker version of Theorem 1.1.

Proposition 5.1. Under the same assumptions as in Theorem 1.1, there exists a

closed subset � ⊂ � × (0,∞), with P 5
3 (�) = 0, such that (u, Q) ∈ C∞(� ×

(0,∞) \ �).

Proof. First it follows from Lemma 4.1 and Lemma 3.2 that for any δ > 0, Q and
fBM(Q) are bounded in � × (δ,∞). Define

�δ =
{

z ∈ � × (δ,∞) : lim inf
r→0

r−2
∫

Pr (z)
(|u|3 + |∇Q|3) dxdt

+(r−2
∫

Pr (z)
|P| 32 dxdt

)2
> ε30

}
.

From Lemma 5.3, we know that �δ is closed and (u, Q) ∈ C∞(� × (δ,∞) \ �δ).
Since δ > 0 is arbitrary, we have that (u, Q) ∈ C∞(� × (0,∞) \ ∪δ>0�δ).

Since u ∈ L∞
t L2

x ∩L2
t H1

x (�×(0,∞)) and∇Q ∈ L∞
t H1

x ∩L2
t H2

x (�×(0,∞)),

we see that (u,∇Q) ∈ L
10
3 (� × (0,∞)). Moreover, since P solves the Poisson

equation (5.57) in�×(0,∞), we conclude that P ∈ L
5
3 (�×(0,∞)). By Hölder’s

inequality, we see that �δ is a subset of

Sδ =
{

z ∈ � × (δ,∞) : lim inf
r→0

r− 5
3

∫

Pr (z)
(|u| 103 + |∇Q| 103 ) dxdt

+ (
r− 5

3

∫

Pr (z)
|P| 53 dxdt

)2
> ε

10
3
0

}
.

A simple covering argument implies that P 5
3 (Sδ) = 0, see [32]. Hence � =

∪δ>0�δ has P 5
3 (�) = 0. This completes the proof. ��

6. Partial Regularity, part II

In this section, we will utilize the results from the previous section and the
Sobolev inequality to first show the so-called A-B-C-D Lemmas (see [5] and [23])
and then establish an improved ε1-regularity property for suitable weak solutions
to (1.6).

Theorem 6.1. Under the same assumptions as in Theorem 1.1, there exists ε1 > 0
such that if (u, Q) : � × (0,∞) → R

3 ×S(3)
0 is a suitable weak solution of (1.5),

which satisfies, for z0 ∈ � × (0,∞),

lim sup
r→0

1

r

∫

Pr (z0)

(|∇u|2 + |∇2Q|2)dxdt < ε21, (6.1)

then (u, Q) is smooth near z0.
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For simplicity, we assume that z0 = (0, 0) ∈ � × (0,∞). To streamline the
presentation, we introduce the following dimensionless quantities:

A(r) := sup
−r2�t�0

r−1
∫

Br (0)×{t}
(|u|2 + |∇Q|2) dx,

B(r) := 1

r

∫

Pr (0,0)
(|∇u|2 + |∇2Q|2) dxdt,

C(r) := 1

r2

∫

Pr (0,0)
(|u|3 + |∇Q|3) dxdt,

D(r) := r−2
∫

Pr (0,0)
|P| 32 dxdt.

We also set

(u)r (t) := 1

|Br (0)|
∫

Br (0)
u(x, t) dx, (∇Q)r (t) := 1

|Br (0)|
∫

Br (0)
∇Q(x, t) dx .

We also let A � B to denote A ≤ cB for some universal positive constant c > 0.
We recall the following interpolation Lemma, whose proof can be found in [5]:

Lemma 6.1. For v ∈ H1(R3),

∫

Br (0)
|v|q(x, t) dx �

( ∫

Br (0)
|∇v|2(x, t) dx

) q
2 −a( ∫

Br (0)
|v|2(x, t) dx

)a

+r3
(
1− q

2

)( ∫

Br (0)
|v|2(x, t) dx

) q
2 . (6.2)

for every Br (0) ⊂ R
3, 2 � q � 6, a = 3

2

(
1 − q

6

)
.

Applying Lemma 6.1, we can have

Lemma 6.2. For any u ∈ L∞([−ρ2, 0], L2(Bρ(0))) ∩ L2([−ρ2, 0], H1(Bρ(0))),
and Q ∈ L∞([−ρ2, 0], H1(Bρ(0))) ∩ L2([−ρ2, 0], H2(Bρ(0))), it holds that for
any 0 < r � ρ,

C(r) �
( r

ρ

)3
A

3
2 (ρ) + (ρ

r

)3
A

3
4 (ρ)B

3
4 (ρ). (6.3)

Proof. From (6.1) with q = 3, a = 3
4 , we obtain that, for any v ∈ H1(Bρ(0)),

∫

Br (0)
|v|3(x, t) dx �

( ∫

Br (0)
|∇v|2(x, t) dx

) 3
4
( ∫

Br (0)
|v|2(x, t) dx

) 3
4

+r− 3
2
( ∫

Br (0)
|v|2(x, t) dx

)3/2
. (6.4)
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Applying Poincaré’s inequality, we obtain that for 0 < r ≤ ρ,∫

Br (0)
(|u|2 + |∇Q|2) dx

�
∫

Br (0)

(∣∣∣|u|2 − (|u|2)ρ
∣∣∣+
∣∣∣|∇Q|2−(|∇Q|2)ρ

∣∣∣
)
dx + ( r

ρ

)3 ∫

Bρ(0)
(|u|2+|∇Q|2) dx

� ρ

∫

Bρ(0)
(|u||∇u| + |∇Q||∇2Q|) dx + ( r

ρ

)3 ∫

Bρ(0)
(|u|2 + |∇Q|2) dx

� ρ
3
2
(
ρ−1

∫

Bρ(0)
(|u|2 + |∇Q|2) dx

) 1
2
( ∫

Bρ(0)
(|∇u|2 + |∇2Q|2) dx

) 1
2

+ ( r

ρ

)3 ∫

Bρ(0)
(|u|2 + |∇Q|2) dx

� ρ
3
2 A

1
2 (ρ)

( ∫

Bρ(0)
(|∇u|2 + |∇2Q|2) dx

) 1
2 + ( r

ρ

)3
ρ A(ρ).

Substituting this estimate into the second term of the right hand side of the previous
inequality, we conclude that
∫

Br (0)

(
|u|3 + |∇Q|3

)
dx

� ρ
3
4
( ∫

Br (0)

(
|∇u|2 + |∇2Q|2

)
dx
) 3
4
(
ρ−1

∫

Br (0)
(|u|2 + |∇Q|2)(x, t) dx

) 3
4

+ r− 3
2
( ∫

Br (0)
(|u|2 + |∇Q|2)(x, t) dx

) 3
2

� ρ
3
4 A

3
4 (ρ)

( ∫

Br (0)
(|∇u|2 + |∇2Q|2)(x, t) dx

) 3
4

+ r− 3
2
( ∫

Br (0)
(|u|2 + |∇Q|2)(x, t) dx

) 3
2

�
(
ρ

3
4 + ρ

9
4

r
3
2

)( ∫

Br (0)
(|∇u|2 + |∇2Q|2) dx

) 3
4 A

3
4 (ρ) + ( r

ρ

)3
A

3
2 (ρ).

Integrating this inequality over [−r2, 0], by Hölder’s inequality, we have

C(r) = 1

r2

∫

Pr (0,0)
(|u|3 + |∇Q|3) dx

�
( r

ρ

)3
A

3
2 (ρ) + (

ρ
3
4 + ρ

9
4

r
3
2

) ∫ 0

−r2

( ∫

Br (0)
(|∇u|2 + |∇2Q|2) dx

) 3
4 dt A

3
4 (ρ)

�
( r

ρ

)3
A

3
2 (ρ) + r− 3

2 ρ
3
4
(
ρ

3
4 + ρ

9
4

r
3
2

)
A

3
4 (ρ)B

3
4 (ρ)

�
( r

ρ

)3
A

3
2 (ρ) + [(ρ

r

) 3
2 + (ρ

r

)3]
A

3
4 (ρ)B

3
4 (ρ)

�
( r

ρ

)3
A

3
2 (ρ) + (ρ

r

)3
A

3
4 (ρ)B

3
4 (ρ).

This completes the proof of (5.2). ��
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Next we want to estimate the pressure function.

Lemma 6.3. Under the same assumption as for Lemma 6.2, it holds that for any
0 < r � ρ

2 ,

D(r) � r

ρ
D(ρ) + (ρ

r

)2
A

3
4 (ρ)B

3
4 (ρ). (6.5)

Proof. From the scaling invariance of all quantities, we only need to consider the
case ρ = 1, 0 < r � 1

2 . By taking divergence of the equation (1.5)1, we obtain

−�P = div2 [u ⊗ u + ∇Q ⊗ ∇Q]

= div2 [(u − (u)1) ⊗ (u − (u)1) + ∇Q ⊗ ∇Q]

= div2[(u − (u)1) ⊗ (u − (u)1) + (∇Q − (∇Q)1) ⊗ (∇Q − (∇Q)1)]
+div2[(∇Q)1 ⊗ (∇Q − (∇Q)1) + (∇Q − (∇Q)1) ⊗ (∇Q)1]. (6.6)

Let η ∈ C∞
0 (R3) be a cut off function of B 1

2
(0) such that

⎧⎨
⎩

η = 1, in B 1
2
(0),

η = 0, in R3 \ B1(0),
0 � η � 1, |∇η| � 8.

(6.7)

Define the following auxillary function:

P1(x, t) = −
∫

R3
∇2

y G(x − y) : η2(y)
[
(u − (u)1) ⊗ (u − (u)1)

+ (∇Q − (∇Q)1) ⊗ (∇Q − (∇Q)1) + (∇Q − (∇Q)1) ⊗ (∇Q)1

+ (∇Q)1 ⊗ (∇Q − (∇Q)1)
]
(y, t) dy.

Then we have

−�P1 = div2 [(u − (u)1) ⊗ (u − (u)1) + ∇Q ⊗ ∇Q] in B 1
2
(0),

and

−�(P − P1) = 0 in B 1
2
(0).

For P1, we apply the Calderon-Zygmund theory to deduce that

‖P1‖
3
2

L
3
2 (R3)

�
∥∥∥η2|u − (u)1|2

∥∥∥
3
2

L
3
2 (R3)

+
∥∥∥η2|∇Q − (∇Q)1|2

∥∥∥
3
2

L
3
2 (R3)

+
∥∥∥η2|(∇Q)1||∇Q − (∇Q)1|

∥∥∥
3
2

L
3
2 (R3)

�
∫

B1(0)
(|u − (u)1|3 + |∇Q − (∇Q)1|3) dx

+|(∇Q)1| 32
∫

B1(0)
|∇Q − (∇Q)1| 32 dx . (6.8)
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Since P − P1 is harmonic in B 1
2
(0), we get

1

r2
‖P − P1‖

3
2

L
3
2 (Br (0))

� r ‖P − P1‖
3
2

L
3
2 (B1(0))

� r
( ‖P‖

3
2

L
3
2 (B1(0))

+ ‖P1‖
3
2

L
3
2 (B1(0))

)
.

Integrating it over [−r2, 0] and applying (5.8), we can show that

1

r2

∫

Pr (0,0)
|P| 32 dxdt

� r
∫

P1(0,0)
|P| 32 dxdt + 1

r2

∫

P1(0,0)
(|u − (u)1|3 + |∇Q − (∇Q)1|3) dxdt

+ 1

r2
(

sup
−1≤t≤0

|(∇Q)1(t)|
) 3
2

∫

P1(0,0)
|∇Q − (∇Q)1| 32 dxdt

� r
∫

P1(0,0)
|P| 32 dxdt + 1

r2

∫

P1(0,0)
(|u − (u)1|3 + |∇Q − (∇Q)1|3) dxdt

+ 1

r2
A

3
4 (1)

∫

P1(0,0)
|∇Q − (∇Q)1| 32 dxdt.

This, combined with the interpolation inequality∫

P1(0,0)
(|u − (u)1|3 + |∇Q − (∇Q)1|3) dxdt

� sup
−1�t�0

( ∫

B1(0)
(|u|2 + |∇Q|2) dx

) 3
4 × ( ∫

P1(0,0)
(|∇u|2+|∇2Q|2) dxdt

) 3
4 ,

and Hölder’s inequality∫

P1(0,0)
|∇Q − (∇Q)1| 32 dxdt �

( ∫

P1(0,0)
|∇Q − (∇Q)1|2 dxdt

) 3
4 ,

implies that

D(r) � r D(1) + 1

r2
A

3
4 (1)B

3
4 (1).

This, after scaling back to ρ, yields (6.5). The proof is now complete. ��
Proof of Theorem 6.1. For θ ∈ (0, 1

2 ) and ρ ∈ (0, 1), let ϕ ∈ C∞
0 (Pθρ(0, 0)) be a

function such that

ϕ = 1 in P θρ
2
(0, 0), |∇ϕ| � 1

θρ
, |∇2ϕ| + |ϕt | � (

1

θρ
)2.

Applying the local energy inequality in Lemma 2.2, the maximum principles Lem-
mas 4.1 and 3.2 , and the integration by parts, we obtain that

sup
−(θρ)2�t�0

∫

�
(|u|2 + |∇Q|2)ϕ2 dx +

∫

�×[−(θρ)2,0]
(|∇u|2 + |∇2Q|2)ϕ2 dxdt

�
∫

�×[−(θρ)2,0]
(|u|2 + |∇Q|2)(|ϕt | + |∇ϕ|2 + |∇2ϕ|) dxdt

+
∫

�×[−(θρ)2,0]
[(|u|2 − (|u|2)θρ) + (|∇Q|2 − |∇Q|2)θρ) + |P|]|u||∇ϕ| dxdt

+
∫

�×[−(θρ)2,0]
|∇Q|2ϕ2 dxdt +

∫

�×[−(θρ)2,0]
(|∇u||∇Q| + |u||�Q|)|ϕ||∇ϕ| dxdt.
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This, with the help of Young’s inequality, gives∫

�×[−(θρ)2,0]
(|∇u||∇Q| + |u||�Q|)|ϕ||∇ϕ| dxdt

� 1

2

∫

�×[−(θρ)2,0]
(|∇u|2 + |∇2Q|2)ϕ2 dxdt

+ 4
∫

�×[−(θρ)2,0]
(|u|2 + |∇Q|2)|∇ϕ|2 dxdt,

which implies that

A(
1

2
θρ) + B(

1

2
θρ)

= sup
−(

θρ
2 )2�t�0

2

θρ

∫

B θρ
2

(0)
(|u|2 + |∇Q|2) dx + 2

θρ

∫

P θρ
2

(0,0)
(|∇u|2 + |∇2Q|2) dxdt

� sup
−(θρ)2�t�0

1

θρ

∫

R3
(|u|2 + |∇Q|2)ϕ2 dx + 1

θρ

∫

R3×[−(θρ)2,0]
(|∇u|2 + |∇2Q|2)ϕ2 dxdt

� 1

θρ

∫

R3×[−(θρ)2,0]
(|u|2 + |∇Q|2)(|ϕt | + |∇ϕ|2 + |∇2ϕ|) dxdt

+ 1

θρ

∫

R3×[−(θρ)2,0]
[(|u|2 − (|u|2)θρ) + (|∇Q|2 − (|∇Q|2)θρ) + |P|]|u||∇ϕ| dxdt

+ 1

θρ

∫

R3×[−(θρ)2,0]
|∇Q|2ϕ2 dxdt

q � 1

(θρ)3

∫

Pθρ (0,0)
(|u|2 + |∇Q|2) dxdt + 1

(θρ)2

∫

Pθρ (0,0)
|P||u| dxdt

+ 1

(θρ)2

∫

Pθρ (0,0)

(||u|2 − (|u|2)θρ | + ||∇Q|2 − (|∇Q|2)θρ |) |u| dxdt

= I1 + I2 + I3.

It is not hard to see that

|I1| �
( 1

(θρ)2

∫

Pθρ(0,0)
(|u|3 + |∇Q|3) dxdt

) 2
3 �C

2
3 (θρ),

|I2| �
( 1

(θρ)2

∫

Pθρ(0,0)
|u|3 dxdt

) 1
3
( 1

(θρ)2

∫

Pθρ(0,0)
|P| 32 dxdt

) 2
3 �C

1
3 (θρ)D

2
3 (θρ),

while, by employing Hölder’s and Poincaré’s inequalities, we have

|I3| � 1

(θρ)2

∫ 0

−(θρ)2

∫

Bθρ(0)
(|u||∇u| + |∇Q||∇2Q|)(

∫

Bθρ(0)
|u|3 + |∇Q|3) 13 dt

� A
1
2 (θρ)B

1
2 (θρ)C

1
3 (θρ).

Putting together all the estimates, we have

A(
1

2
θρ) + B(

1

2
θρ) �

[
C

2
3 (θρ) + A

1
2 (θρ)B

1
2 (θρ)C

1
3 (θρ) + C

1
3 (θρ)D

2
3 (θρ)

]

�
[
C

2
3 (θρ) + A(θρ)B(θρ) + D

4
3 (θρ)

]
,
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so that

A
3
2 (
1

2
θρ) �

[
C(θρ) + A

3
2 (θρ)B

3
2 (θρ) + D2(θρ)

]
,

while

D2(θρ) � θ2
[
D2(ρ) + θ−6A

3
2 (ρ)B

3
2 (ρ)

]
,

and

C(θρ) � θ3A
3
2 (ρ) + θ−3A

3
4 (ρ)B

3
4 (ρ).

Also note that

A
3
2 (θρ)B

3
2 (θρ) ≤ θ−3A

3
2 (ρ)B

3
2 (ρ).

Therefore we conclude that for 0 < θ0 < 1
2 ,

A
3
2 (
1

2
θ0ρ) + D2(

1

2
θ0ρ)

� c[θ20 D2(ρ) + (θ−3
0 + θ−4

0 )A
3
2 (ρ)B

3
2 (ρ) + θ30 A

3
2 (ρ) + θ−3

0 A
3
4 (ρ)B

3
4 (ρ)]

� c[θ20 (D2(ρ) + A
3
2 (ρ)) + θ−8

0 A
3
2 (ρ)B

3
2 (ρ) + θ20 ]

� c(θ20 + θ−8
0 B

3
2 (ρ))(A

3
2 (ρ) + D2(ρ)) + cθ20 .

For ε1 > 0 given by Theorem 5.1, let θ0 ∈ (0, 1
2 ) such that

cθ20 = min
{1
4
,
1

2
ε21
}
.

From (6.1), we know that

lim sup
ρ→0

B(ρ) ≤ ε21,

hence there exists ρ0 > 0 such that

cθ−8
0 B

3
2 (ρ) ≤ 1

4
, ∀0 < ρ < ρ0.

Therefore we conclude that there exist θ0 ∈ (0, 1
2 ) and ρ0 > 0 such that

A
3
2 (
1

2
θ0ρ) + D2(

1

2
θ0ρ) ≤ 1

2
(A

3
2 (ρ) + D2(ρ)) + 1

2
ε21, ∀0 < ρ < ρ0.

Iterating this inequality yields that

A
3
2 ((

1

2
θ0)

kρ) + D2((
1

2
θ0)

kρ) ≤ 1

2k
(A

3
2 (ρ) + D2(ρ)) + ε21 (6.9)

holds for all 0 < ρ < ρ0 and k ≥ 1.
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Employing (5.2) and (6.9), we obtain that

C((
1

2
θ0)

kρ) ≤ c

[
(
1

2
θ0)

3A
3
2 ((

1

2
θ0)

k−1ρ) + (
1

2
θ0)

−3A
3
4 ((

1

2
θ0)

k−1ρ)B
3
4 ((

1

2
θ0)

k−1ρ)

]

≤ c

[
(
1

2
θ0)

3 + (
1

2
θ0)

−3ε
3
2
1

][
1

2k−1
(A

3
2 (ρ) + D2(ρ)) + ε21

]
(6.10)

holds for all 0 < ρ < ρ0 and k ≥ 1.
Putting (6.9) and (6.10) together, we obtain that

lim sup
k→∞

[
C((

1

2
θ0)

kρ) + D2((
1

2
θ0)

kρ)

]
≤ c

[
1 + (

1

2
θ0)

3 + (
1

2
θ0)

−3ε
3
2
1

]
ε21 ≤ 1

2
ε30

(6.11)

holds for all ρ ∈ (0, ρ0), provided ε1 = ε1(θ0, ε0) > 0 is chosen sufficiently
small. Therefore, by Lemma 5.4 (u, Q, P) is smooth near (0, 0). This completes
the proof. ��

Theorem 1.1 can be proved by the following covering argument. Let � be the
singular set of suitable weak solutions (u, Q, P). If (x, t) ∈ �, then, by theo-
rem 6.1,

lim sup
r→0

1

r

∫

Pr (x,t)
(|∇u|2 + |∇2Q|2) dxdt � ε1. (6.12)

Let V be a neighborhood of � and δ > 0 such that for all (x, t) ∈ �, we can find
r < δ such that Pr (x, t) ⊂ V and

1

r

∫

Pr (x,t)

(
|∇u|2 + |∇2Q|2

)
dxdt � ε1.

By Vitali’s covering lemma, ∃(xi , ti ) ∈ V, 0 < ri < δ such that
{
Pri (xi , ti )

}∞
i=1

are pairwise disjoint and

� ⊂
∞⋃

i=1

P5ri (xi , ti ).

Hence

P1
5δ(�) ≤

∞∑
i=1

5ri � 5

ε1

∞∑
i=1

∫

Pri (xi ,ti )

(
|∇u|2 + |∇2Q|2

)
dxdt

� 5

ε1

∫

∪iPri (xi ,ti )

(
|∇u|2 + |∇2Q|2

)
dxdt

� 5

ε1

∫

V

(
|∇u|2 + |∇2Q|2

)
dxdt < ∞.

We can conclude that � is of zero Lesbegue measure. Then we can choose |V | to
be arbitrarily small from the fact that by
∫ ∞

0

∫

�

(
|∇u|2 + |∇2Q|2

)
dxdt =

∫ ∞

0

∫

�

(
|∇u|2 + |�Q|2

)
dxdt < ∞
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and the absolute continuity of the integral, we have

lim|V |→0

∫

V

(
|∇u|2 + |∇2Q|2

)
dxdt → 0.

Hence

P1(�) = lim
δ→0

P1
5δ(�) = 0.

This completes the proof of Theorem 1.1. ��
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