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Abstract

In this paper, we establish the global existence of a suitable weak solution to the
co-rotational Beris—Edwards Q-tensor system modeling the hydrodynamic motion
of nematic liquid crystals with either Landau—De Gennes bulk potential in R3 or
Ball-Majumdar bulk potential in T?, a system coupling the forced incompressible
Navier—Stokes equation with a dissipative, parabolic system of Q-tensor Q in R3,
which is shown to be smooth away from a closed set ¥ whose 1-dimensional
parabolic Hausdorff measure is zero.

1. Introduction

In this paper, we consider in dimension three the so-called Beris—Edwards
system [4,10] that describes the hydrodynamic motion of nematic liquid crystals,
with either the Landau—-De Gennes bulk potential function [8] or the Maire—Saupe
(Ball-Majumdar) bulk potential function [3]. Roughly speaking, this is a system
that couples a forced Navier—Stokes equation for the underlying fluid velocity field
u with a dissipative parabolic system of Q-tensors modeling nematic liquid crystal
orientation fields. We are interested in establishing the existence of certain global
weak solutions for such a Beris—Edwards system that enjoys partial smoothness
property, analogous to the celebrated works by Cafferalli-Kohn—Nirenberg [5] on
the Navier—Stokes equation and Lin-Liu [24] and [25] on the simplified Ericksen—
Leslie system modeling nematic liquid crystal flows with variable degree of orien-
tations, which was proposed by Ericksen [12,13] and Leslie [22] in the 1960’s.

We begin with the description of this system. Recall that the configuration space
of Q-tensors is the set of traceless, symmetric 3 x 3-matrices, i.e.,

Y = {Q eR>3. 0=0", w0 =0}.
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For technical reasons, we will consider the one constant approximate form of the
Landau-De Gennes energy functional of Q-tensors, namely,

L 2
E(Q)=/Q(§IVQI + Fpuk(Q)) dx

over the Sobolev space H 1 (2, 863)), where Q is a three dimensional domain that
is assumed to be either R? or the torus T3 = R3/Z3 in this paper. Here L > 0
denotes the elasticity constant, and Fpyx(Q) denotes the bulk potential function
that usually describes the phase transition among various phase states including
isotropic, uniaxial, or biaxial states. We refer interested readers to Mottram-Newton
[29] and Sonnet—Virga [33] for a more detailed discussion of general Landau—De
Gennes energy functionals involving multiple elasticity constants L;’s. In this paper,
we will consider two classes of bulk potential functions:

(1) (Landau-De Gennes bulk potential [8].) Here Fyuk (Q) = Frig(Q), and

FLic(Q) = FLag(Q) — m};} FLac(Q)), (1.1)
Q'e
where
= a 2 b 3 C. 2.2
Faa(Q) = Str(Q%) — 3tr(Q) + Ju*(0%), (1.2)

where a, b, c > 0 are temperature dependent material constants. It is a well

known fact that if 0 < a < then FLdG reaches its minimum at Q =

27 ’
s+(d®d— 13) where s, = btvb —2dac b2 24a¢ and d e S? is a unit vector field.

(i) (Ball- Majumdar singular bulk potent1a1 [3].) Here Fouk(Q) = Fm(Q) is a
modified Maire-Saupe bulk potential introduced by Ball-Majumdar [3], which
is defined as follows. Fgm(Q) = Gym(Q) — %IQI2 for some k¥ > 0, and

. . .
Gem(0) = pfg;{leszp(p)Ing(p)do(p) if —1<2x;(0) <3,

00 otherwise,
(1.3)

where A, j = 1,2, 3, denotes the eigenvalues of Q € 5(3), and
Ap=]0<pel!@:0p=p-p). /S p(p)do(p) =1,

1
[ o= 3mpmrowm =0},
S2 3

It was proven by [3] that Gy is strictly convex and smooth in the interior of
the convex set

p={oesy: —§§A(Q)<— i=1.23].
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It is well-known that the first order variation of the Landau—De Gennes energy
functional E is given by

H=LAQ — foux(Q), fouk(Q) = (VFouk(Q)) = V Fou (Q)
_ r(VFEuk(Q)) I
— b

In particular, if Fpux(Q) = FLag(Q), then

(1.4)

tr(Q?)
3

fouk(Q) = (VFLig(Q)) = aQ — b[Q* — I] + cOtr(0?).

ForO < T < oo,denote Qr = Q2 x (0,T]. Letu: Q7 — R3 denote the fluid
velocity fieldand Q : Q7 — 863) denote the director field. Define

1 1
S(Vu, 0) = D+ w)(Q+ 31) +(Q+ 1) (D — )
1
—26(Q + 3 B)w(QVuw),
where
1 T 1 T
D= E(Vu—l— (Vu) ') and w = E(Vu —(Vu) ')

are the symmetric part and the antisymmetric part, respectively, of the velocity
gradient tensor Vu, and £ € R is arotational parameter measuring the ratio between
the aligning and tumbling effects to Q by the fluid velocity field.

The Beris—Edwards Q-tensor system modeling the hydrodynamic motion of
nematic liquid crystals reads as [15,30]

Q0 +u-VQ—S(Vu,Q)=TH
Ju4+u-Vu+ VP = pAu+div(t 4+ o) (1.5)
diva = 0,

where I' > 0 is a relaxation time parameter, u > 0 is the fluid viscosity constant,
and t is the symmetric part of the additional stress tensor given by

Su 1)
Top = —£(Quy + Ty)Hyﬂ — §Hoy (Qyp + %ﬁ)

1)
+26(Qup + =) QysHys — Lip QysdaQys. 1 <. p <3,
and o is the antisymmetric part of the additional stress tensor:
oup = [0, Hlap :==QayHyp — Huy Qyp, l<a, B =<3

Since both f14g(Q) and fgMm(Q) are isotropic functions of Q, we have

[Q, foruk(Q)] =0,
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so that

o =[0,LAQ — fouk(Q)] = L[Q, AQ].

In this paper, we will focus on the co-rotational Beris—Edwards system (1.5),
ie.,

£=0|

Since the exact values of L, I', « don’t play roles in our analysis, we will assume,
for simplicity,

L=T=p=1]

We will also assume the domain €2 to be

R} if Fouk(Q) = FLic(Q),

=1, "
T if Foux(Q) = Fem(Q).

With these assumptions and the identity

1
(05 Q500 Qys) = 02 Qys AQys + da <§IVQ|2> :
the system (1.5) reduces to the following form:

Q0 +u-VO —[w, 0l=A0 — fouk(0Q),
du+u-Vu+ VP =Au—-VQ- -AQ+div[Q, AQ], in 2 x (0, c0) ,
divu = 0,

(1.6)
subject to the initial condition
(u, Qli=o0 = (wo, Qo)(x) for x € . (1.7

A key feature of the Beris—Edwards system (1.6) (or (1.5) in general) is the energy
dissipation property, which plays a fundamental role in the analysis of (1.6). More

precisely, if (u, Q) : Q x (0, 00) — R3 x 863) is a sufficiently regular solution of
(1.5), then it satisfies the following energy inequality [30,31]:

d
T E@ o0 = —/Q(|Vu|2 +[H|))(x, 1) dx, (1.8)
where
oo 1 2
E(u, Q)(1) = i EIUI +§|VQ| + Fou(Q) | (x, 1) dx (1.9)
is the total energy of the complex fluid consisting of the elastic energy of the director

field Q and the kinetic energy of the underlying fluid u. While the right hand side
of (1.8) denotes the dissipation rate of this system of complex fluid.
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Some Notations For Q € 863), we use the Frobenius norm of Q, i.e.

101 = Vtr(0?) = v/ Qup Qup,

and the Sobolev spaces of Q-tensors, W' (€, 853)) (! eNyand1 < p < 00),
are defined by

whe(@,85) = [Q = (Qup) 1 Q2> S5 Qup e WHP(Q), VI <, B < 3}.

When p = 2, we denote WI’Z(Q, 853)) by H[(Q, 853)). For A, B € R3*3 we
denote

A:B=AugBos, A-B=1tr(AB), |[VOI*=Qupy Qupy, |AQI*=AQupsAQup,
and
(u®u)ep =ugug, VO VQ)ep=Va0QysVsQys.

Notethat A: B=A-Bfor A, B € 863). We also use Agym, Aan to denote the
symmetric and antisymmetric parts of A, respectively.
Define

H = Closure of {u € CP(QLRY) ¢ diva = o} in L2(Q),
and

V = Closure of [u € CP(Q.RY) : divu = o} in H(Q).

For0 <k <5, Pk denotes the k-dimensional Hausdorff measure on R3 x R4
with respect to the parabolic distance:

5((x, 1), (y, 5)) = max {|x T —s|}, Vx, 1), (y,5) € B3 x R,.

Now we would like to recall the definition of weak solutions of (1.6).

Definition 1.1. A pair of functions (u, Q) : Q x (0, 0) — R3 x Sé?’) is a weak
solution of (1.6) and (1.7), ifu € L®L2NL?H} (2 x (0, 00)) and Q € L*H! N
LZH2(Q x (0, 00)), and for any ¢ € C(R x [0, 00), ) and ¢ € CF(Q x
[0, c0), R3), with divyy = 01in 2 x [0, 00), it holds that

/Q o )[_Q'at¢—AQ'¢—Q'U®V¢+[Q,w]~¢]dxdt

= —f fbulk(Q)-¢>dxdt+/ Qo(x) - ¢(x,0) dx, (1.10)
Qx(0,00) Q
and

/ [-u 0¥+ Vu-Vy —u®u: Vy]dxds
2x(0,00)
=f [—AQW - V)Q +[AQ, Q] Vy]dxds
Qx(0,00)

+f uo(x) - ¥ (x, 0)dx, (1.11)
Q



754 H. DU ET AL.

Paicu—Zarnescu [30] have obtained the existence of global weak solutions to
(1.6) and (1.7) in R3, and the existence of global strong solutions to (1.6) and (1.7)
in R2, when the bulk potential function is F14g(Q). Ding-Huang [9] have studied
local strong solutions of (1.6). For non-corotational Beris—Edwards system (i.e.
& # 0), Paicu—Zarnescu [31] have obtained the existence of global weak solutions
to (1.6) and (1.7) in R3 for sufficiently small |€] > 0. Later, Cavaterra—Rocca—
Wu-Xu [6] have removed the smallness condition on & for (1.6) and (1.7) in R2.
Wilkinson [38] has obtained the existence of global weak solutions to (1.6) and
(1.7) in three dimensional torus T2, when the bulk potential function is the Ball—-
Majumdar potential Fp(Q). The situation of Beris—Edwards system (1.6) for the
De Gennes potential Fiqg(Q) on bounded domains, under the initial-boundary
condition, behaves slightly different from that on R3. In fact, Abels—Dolzmann—
Liu [1,2] have established the well-posedness of (1.5) for any arbitrary constant
&; see also [14] for related works on nonisothermal Beris—Edwards system. We
also mention an interesting work on the dynamics of Q-tensor system by Wu-—
Xu—Zarnescu [39]. Interested readers can refer to Wang—Zhang—Zhang [37] for a
rigorous derivation from Landau—-De Gennes theory to Ericksen-Leslie theory. For
related works on the existence of global weak solutions to the simplified Ericksen—
Leslie system, see [18,26-28].

The works mentioned above left the question open of whether or not certain
weak solutions of (1.5) pose either smoothness or partial smoothness properties.
This motivates us to study both the existence of suitable weak solutions of (1.6)
and their partial regularities. The notion of suitable weak solutions was first intro-
duced by Caffarelli-Kohn—Nirenberg [5] and Scheffer [32] for the Navier—Stokes
equation, and later extended by Lin-Liu [24,25] for the simplified Ericksen-Leslie
system with variable degree of orientations. Here we introduce the notion of suitable
weak solutions to the Beris—Edwards system as follows:

Definition 1.2. A weak solution (u, P, Q) € (L®L2NL?H!)(Q x (0, 00), R?) x
L3(Q x (0,00)) x (LH! N L2ZH2)(Q x (0, 00), SV) of (1.6) and (1.7) is a
suitable weak solution of (1.6), if, in addition, (u, P, Q) satisfies the local energy
inequality V0 < ¢ € C5°(2 x (0, t]),

/(|u|2+|VQ|2)¢(x,r>dx+2/ (IVu]® + |AQP)p (x, 5) dxds
Q o
s/ (u®> + VO (3 + Ap)(x, s) dxds
o
+ [ [(u+2P)u -V +2VO®VQ :u® Vel(x,s)dxds

O

+2 | (VO®VQO —|VOPPLh) : Vi(x,s)dxds
o)

2| [0,AQ] - u® Ve(x,s)dxds
0

—2 0 [, Q- (VOV®) + V (four(Q)) - VOS] (x,5) dxds. (1.12)
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The notion of suitable weak solutions turns out to be a necessary condition for
the smoothness of (1.6). In fact, the local energy inequality (1.12) automatically
holds for a sufficiently regular solution of (1.5), which can be obtained by mul-
tiplying (1.5), by u¢, and taking spatial derivative of (1.5); and multiplying the
resulting equation by V Q¢, and then applying integration by parts, see Lemma 2.2
below for the details. We would like to point out that in the process of derivation
of (1.12), the cancellation identity

/[Q,w]:AQ¢dx=—/ [0, AQ] : Vugdx (1.13)
Q Q

plays a critical role.

Now we are ready to state our main theorem, which is valid for the Beris—
Edwards system associate with both the Landau—De Gennes bulk potential F1 4G (Q)
in R? and Ball-Majumdar bulk potential Fgn(Q) in T3. We would like to point
out that, due to the technique involving a L' — L estimate for the advection-
diffusion equation on compact manifolds, we choose to work on the domain T3,
instead of R3, for the Ball-Majumdar potential Fgy.

More precisely, we have

Theorem 1.1. For any ug € H, if either

(i) Q=R3, Fou (-) = FLa (") withc >0, and Qg € H'(R3, SN (R3, 8§,
or

(i) @ = T3, Fouk() = Fam(), and Qo € H'(T%, 8§”) satisfies Goun(Qo) €
LT,

then there exists a global suitable weak solution (u, P, Q) : @ x Ry — R? x

R x S(()}) of the Beris—Edwards system (1.6), subject to the initial condition (1.7).

Moreover,

(u, Q) € CT(Q x (0,00) \ ),
where & C Q x Ry is a closed subset with P () = 0.

We would like to highlight some crucial steps of the proof for Theorem 1.1:

(1) The existence of suitable weak solutions to (1.6) and (1.7) is obtained by
modifying the retarded mollification technique, originally due to [32] and [5]
in the construction of suitable weak solutions to the Navier—Stokes equation.

(2) For the Landau—De Gennes potential F 4G (Q), we establish a weak maximum
principle of Q for suitable weak solutions (u, P, Q) of (1.6) and (1.7) that
bounds the L°°-norm of Q in R3 x (0, 00) in terms of that of initial data Qo;
see also [15]. In particular, VZQdeG(Q) is also bounded in R3 x (0, 0o) for
[ >0.

(3) Forthe Ball-Majumdar potential Fgn(Q), we follow the approximation scheme
of Ggm by Wilkinson [38] and use the convexity property of Gy (Q) to bound

||GBM(Q)||LOC(’]1"3><[(SVT]), VO < 8 <T < o0,
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in terms of || Fem(Qo)llz1(13), 8, and T. This guarantees that Q is strictly
physical in T3 x [6, T], i.e., there exists a small y > 0, depending on 4, T,
such that

1 2
—3 7 =hQE N =Ty, =123 V(1€ T x [8, T].

In particular, both Q(x, ) and fgm(Q (x, t)) are bounded in T3 x [, T'] for
0<é§<T.

(4) Based on the local energy inequality (1.12), (2), and (3), we perform a blowing
up argument to obtain an ep-regularity criteria of any suitable weak solution
(u, P, Q) of (1.6), which asserts that if

(20, 7)
= r_zf (jul’ +VQP) dxdr + ("2/ (P13 dudr)” < €,
PPy (x0.10) F

' (X0,70)

(1.14)

then (xo, fp) € 2 x (0, 00) is a smooth point of (u, Q). The idea is to show
that (u, P, Q) is well approximated by a smooth solution to a linear coupling
system in the parabolic neighborhood ]P’% (x0, t0) of (xo, f9), which heavily

3 .
relies on the local energy inequality (1.12) and interior L2-estimate of the
pressure function P, which turns out to solve the following Poisson equation:

— AP =div? (u Qu+ <VQ QVQ— %|VQ|213>> in B, (x).
(1.15)

Here the following simple identity plays a crucial role in the derivation of
(1.15):

div’[Q1, AQ2 — four(Q2)] = 0'in B, (xp), (1.16)

for Q1, 02 € H*(B:(x), 863)). See §2 for its proof.
This blowing up argument implies that for some 6 € (0, 1), @y, 1) () < C 39 for
(x4, ts) near (xo, tg) , which can be used to further show that (u, V Q) are almost
bounded near (xo, fp) by an iterated Riesz potential estimates in the parabolic
Morrey spaces, see also Huang—Wang [19], Hineman—Wang [17], and Huang—
Lin—Wang [18]. Higher order regularity of (u, Q) near (xg, fp) turns out to be
more involved than the usual situations, due to the special nonlinearities. Here we
establish it by performing higher order energy estimates and utilizing the intrinsic
cancellation property, see also [18] for a similar argument on general Ericksen—
Leslie system in dimension two. It is well-known [32] that this step is sufficient to

show that (u, Q) is smooth away from a closed set ¥ which has P% () =0.
To obtain P!(Z) = 0 from the previous step, we adapt the argument by [5] to
show that if

mrﬁor—lf (IVu> + |V2Q*) dxdr < &3, (1.17)
Py (x0,%0)
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then (u, Q) € C OO(P% (x0, tp)). This will be established by extending the so called
A, B, C, D Lemmas in [5] to system (1.6).

The paper is organized as follows: in Sect. 2, we derive both the global and local
energy inequality for sufficiently regular solutions of (1.6). In Sect. 3, we indicate
the construction of suitable weak solutions to (1.6) and (1.7) for both Landau-De
Gennes potential and Ball-Majumdar potential. In Sect. 4, we prove two weak
maximum principles for suitable weak solutions to (1.6) and (1.7): one for Q and
the other for Gpm(Q). In Sect. 5, we prove the first gg-regularity of suitable weak
solutions to (1.6) and (1.7) in terms of ®(zg, 7). In Sect. 6, we will prove the second
gp-regularity of suitable weak solutions to (1.6) and (1.7) in terms of (1.17).

2. Global and Local Energy Inequalities

In this section, we will present proofs for both global energy inequality and local
energy inequality for sufficiently regular solutions to the Beris—Edwards system
(1.6).

Lemma 2.1. Let (u, Q) € C®(Q x (0, 00), R? x 8) be a smooth solution of
Beris—Edwards system (1.6). Then the global energy inequality (1.8) holds.

Proof. The proof is standard, see for instance [30,38]. O

Next we are going to present a local energy inequality for sufficiently regular
solutions to the system (1.6).

Lemma 2.2. Assume (u, P, Q) € C®(Q x (0,00), R} x R x ) is a smooth
solution of (1.6). Then for t > 0 and any nonnegative ¢ € C3°(22 x (0, t]), the
following inequality holds on Q; = 2 x [0, t]:

/(IuI2+IVQ|2)¢(x,t)dx+2/ <|Vu|2+|AQ|2>¢dxds
Q

O

=f (12 +190P) @ + A drds

+/ [(u> +2P)u-V¢ +2(VQ ® VQ) : u® Ve]dxds
o 2.1)
+2 [ (VQ®VQ —|VQPh): Vi dxds
o)

-2 [0, AQ]:u® V¢ dxds
(o

2 [ (1. 01: (VOY9) + Y (fou(Q)) - V) dxds.
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Proof. Using divu = 0, multiplying the momentum equation (1.6), by u¢, inte-
grating the resulting equation over €2, and applying integration by parts, we obtain

1d

2 2
- d \% d
orT Q|u|¢x+fﬂ| u|%¢ dx

1 1
= —/ lul?(3;¢ + Ag)dx + = / (lu> +2P)u - V¢ dx
2Ja 2Ja 2.2)

—/(u~V)Q~AQ¢dx
Q

—/ [Q,AQ]: Vugdx —/ [0, AQ]:u® Vepdx.
Q Q
Taking a spatial derivative of the equation of Q (1.6); yields

010 Q +u- Vg Q4 dgu- VO + 03[0, 0] = Ady Q@ — 9a(fourk (Q))-

Using again diva = 0, multiplying the equation above by d, Q¢, integrating the
resulting equation over €2, and applying integration by parts, and sum over o, we
obtain

1d

Z— 2 2
T QIVQI ¢dx+/QIAQ| ¢ dx

_ 1/ IVQ|281¢dX+/(u-V)Q~(AQ¢>+VQV¢)dx
2Ja @ (2.3)
—fg[w, 01: (AQ + VOV§) dx

—/QAQ~VQV¢dx—/Ov(fbulk(Q))'de’dx-

By direct calculations, there holds

—/ AQ-VQVédx
Q

=/ %|VQ|2A¢dx+/(VQ®VQ—IVQ|213)1V2¢dx, 2.4)
Q Q
and

/Q[a), 0]:AQpdx = —/Q[Q,AQ] : Vug dx. 2.5)
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Hence, by adding (2.2) and (2.3) together and applying (2.4) and (2.5), we have

—— (|u|2+IVQI2)¢dX+/ (IVul> + 1A Q%) ¢ dx
2dt Jq Q

1 2 2 1 2
=—/ (lul* + VOl )(31+A)¢dx+—/(IUI +2P)u-Vedx
2 Jo 2 Jo

_|_/Q(u.v)Q.VQV¢dx—/Q[Q,AQ]:u®V¢dx
_/Q[w, Q]:vgv¢dx—/Qv<fbulk(Q>>-VQ¢dx
-|-/Q(VQ ® VO~ |VOI) : V.
This, after integrating over [0, £], yields the local energy inequality (2.1). O

We close this section by giving a proof of the identity (1.16). More precisely,
we have

Lemma 2.3. For @ = R? or T3, if 0", 02 € HX(,8}”), then
div[Q', AQ* — fouk(QH)] =0 in €, (2.6)
in the sense of distributions.

Proof. For any ¢ € C{°(S2), we see that

82
/divz[Ql,AQ2—fbu1k(Q2)](¢)Z/ [QRAQz—fbuluQ%]aﬁ)a g
Q Q Xq0Xp
Set
Agg = 0", AQ? — fou(Q)]ap, Y1 <a, B <3,

and

Byg = ¢ Vi<a,f <3

ap = axaaxlg’ - -

Since Q! and Q? are symmetric, it is easy to check that
Aop = —Agy, Bap = Bpy, Y1 <, B < 3.
We recall the following matrix contraction:
A B = Agym : Bsym + Aanti : Banti-

Hence (2.6) follows. |
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3. Global Existence of Suitable Weak Solutions

This section is devoted to the construction of suitable weak solutions to the
Beris—Edwards system (1.6). The idea is motived by the “retarded mollification
technique” originally due to [32] and [5] in the context of Navier—Stokes equations.
Since the procedure for Ball-Majumdar potential Fppm(Q) is somewhat different
from that for Landau—De Gennes potential F14g(Q), we will describe them in two
separate subsections.

We explain the construction of suitable weak solutions in the spirit of [5]. For
f:R* > Rand 0 < 6 < 1, define the “retarded mollifier” Wy (f) of f by

1 Yy T\ =~
wil i n =gz [ n(3.5) Fx =y = mayar,
where

f, )y =0,

f(x’t)z{o t <0,

and the mollifying function n € C§° (R*) satisfies

n>0 and /ndxdtzl,
R4

supp n C {(x,t) : |x|2 <t, l<t< 2}.
It follows from Lemma A.8 in [5] that for 0 € (0, 1]and 0 < T < o0,
divWg[u] =0 if divu =0,

sup / |Wp[u]|*(x,r)dx < C sup f lul?(x, ) dx
0<t<T JR3 R3

0<t<T

/ [VWlu]|*(x, 1) dxdt < c/ |Vu|?(x, 1) dxdr.
R3%[0,T] R3x[0,T]

Now we proceed to find the existence of suitable weak solutions of (1.6) and
(1.7) as follows:

3.1. The Landau—De Gennes potential ’ Fouik(Q) = FrLag(Q) and Q2 = R3

With the mollifier Wy[u] € C °°(R4), we introduce an approximate version of
the Beris—Edwards system (1.6), namely,

30 +u’ V[ 0%] — [0, W[ 0711 = AQY — fiac(Q?).

au? + wyu’]- vu? + vp?

= Au’ — V([0%]) - (AQY — fLac(Q")) in 0r (3.1)
+div[Ws[Q7], AQ? — fLac(QN)],

diva? =0,
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9 vu’ —(vu?)T
—_—

subject to the initial condition (1.7). Here ” = w@?) =

The idea behind the construction of suitable weak solutions to (3.1) is as follows:
for a fixed large N > 1,set6 = % € (0,1], we want to findu = u?, P = P?,
and O = Qe solving (3.1) and (1.7). Since Wy [u] and Wy [ Q] are smooth, and their
values at time ¢ depend only on the values of u and Q at times prior to ¢ — 6, solving
(3.1) and (1.7) involves iteratively solving (3.1) in the interval [m8, (m + 1)0],

subject to the initial condition

W Q),_,, =@’ 0. mo)in R’

for 0 < m < N — 1. This amounts to solving a system that couples a semi-linear
parabolic-like equation for Q and a Stokes-like equation for u, in which all the
coefficient functions are given smooth functions.

We can verify, by the classical Faedo—Garlekin method, the existence of
?, 0%, PY) inductively on each time interval (m6, (m + 1)6) for all 0 < m <
N —1.Indeed for m = 0, according to the definition of Wy, Wy w?) = ¥y (0% =0,
and the system (3.1) reduces to a linear system

3 0% = AQY — frac(Q?)
g’ +vpr? = Au’
divu? =0

W?, 0%)i=0 = (o, Qo)

(3.2)

in R3 x [0, 6]. For the system (3.2), QY and u’ are decouple, and u’ can be found
according to the standard theory of Stokes equations, while the equation of QY is
a semi-linear parabolic equation which can be solved by the standard method for
parabolic equations.

Suppose now that the system (3.1) has been solved for some 0 < k < N — 1.
We are going to solve the system (3.1):

0 Qup + 10 VQop — [0, Qlap = AQup — f14G(Qlap
Uy + 0 - Vug + 0y P = Auy — 9y Q,By(AQ - deG(Q))ﬁy

“ (3.3)
+ 35[0, AQ — fLic(Q)]lep
divua =0,
in the time interval [k6, (k 4 1)0] with the initial data
W, Qli—to = @’, Q") (-, k) in R’ (3.4)

and
0 =[] and @ = Yy[u’].

Note that t and Q are smooth functions in [k6, (k + 1)8] x R3.
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The existence of (u, Q) in (3.3) may be solved by using the Faedo—Galerkin
method. Indeed for a pair of smooth test functions (¢, ¢) € H 2(R3 , 883)) x V, the
system (3.3) turns to be

d - -

d—/ vo. vwdx—f <u-VQ,Aw>dx—/ (=0, Olups Arug) dx
t Jr3 R3 R3 (35)
=— /}R3(AQaﬁ — fLic(Q)ap, AVap) dx,

and
i/ (u,¢)dx+/ (ﬁ~Vu,¢))dx+/ (Vu, Vo) dx
dt Jg3 R3 R3
== [ (305 (20  frac(@Dpy. 0u) x (3.6)
R3
= [ (1050 - fac(@)lup. 9 ) .
R3

in the sense of distributions. The system of first order ODE equations (3.5)—(3.6) can

be solved when the test function (7, ¢) are taken to be the basis of H>(R3, 863)) xV
up to a short time interval [k, k6 + Ty]. Performing the energy estimate for (3.3)
as for the original system, we get that, for k60 <t < k6 + Ty,

sup [ (1P + 1VQ"F + Flaa(@")) d
t>k6 JRR3

t
[ (vuP 180 faa(@)F) dxds
ko JR3
< [ (WP +190"P + Fuac(@")) (. ko) dx.
R3

Hence Tj can be extended up to 6.
Let (u?, P?, 0%) be the global weak solution of (3.1) and (1.7) in Q7. Then

w e L®L2NL?HNOr), 0° € LYH! N L?H?(Qr), P’ € L*(Q7).
Observe that
[0, W[ Q11 : (AQY — fiac(Q?)) := —[We[ 071, AQ? — fiag(0Q")]: V.

Hence, by calculations similar to Lemma 2.1, we deduce that (ue, Qe) satisfies
the global energy inequality, for0 <z < T,

E@’, 0%) () +f (IVu? > + 1207 — frac(Q")|?) dxdt

R3x[0,1]
1 1
<E@’, 0%)0) = /R <§IUOI2 + §|VQ0|2 + FLdG(Qo>) (x, 1) dx.
(3.7
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Direct calculations show that

f AQY - frac(Q%) dx
R3

= —a/ VY ? dx — c/ (IvQ?1210%1* + l|Vtr<(Q9>2)|2) dx

R3 R3 2
02
+be3 (= @13) -vo?dx
< —ff (IVQPIQ°P + L1vir((0*))?) dx + Ca. b, c)/ IV Q! P dx.
4 ]R3 2 ]R3

This, combined with the assumption ¢ > 0 and estimate (3.7), gives

if (0’ + |VQ?1? + FLac(Q9))(x, 1) dx +2f (|Vu9|2 + |AQ"|2> dx
dt Jp3 R3
+e / 3 <IVQ9|2|Q9|2 + %IVtr((Qe)z)F) dx (3:8)
R\

<C(a,b, c)/ [vo?? dx.
]R3

Therefore we deduce from (3.8) and Gronwall’s inequality that

sup / (W12 + VO + FLag(Q%)(x, 1) dx
]R3

0<t<T

+/ <|Vu9|2 + |AQ9|2) dxdr (3.9)
R3x[0,7]

<Cla,b,c, T><||uo||iz(R3) +1 Qo||§11(R3)).
From (1.1), we know that there exists a My > 0, depending on a, b, c, such that
FLio(Q) = 5101, vQ € 8§ with |Q] = Mo.
This, combined with (3.9) and F14g(Q) > 0, implies that

sup 107 (x, )[* dx

0<t<T /{xeR3: 109 (x,0)|> Mo}

<2 wp /R Flao(Q)(x, 1) dx G109

C 0<t<T

IA

Cla, b, e, T)(Iluoll7 g3, + 1Qoll 1 g3))-
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From (3.10), we can conclude that for any compact set K C R3,

sup f 107 (x, )[* dx
K

0<t<T

< s [ 10 e, 0l
0<t<T * J{xeK: |0 (x,n|<Mpo} (3.11)

+/ 0%, )l dx
{xeK: Q9 (x,1)|>Mp)}

< IKIMg + C(a, b, ¢, T)(Iwoll72 g3, + 1 Qoli31 gs))-

From (3.9) and (3.11), we have that u? is uniformly bounded in L%Hx1 (R3 %[0, T]),
QY is uniformly bounded in L> H2(K x [0, T]) for any compact set K C R?, and
VQ(9 is uniformly bounded in L,ZHX1 (R? x [0, T']). Therefore, after passing to a
subsequence, we may assume that as &6 — 0 (or equivalently N — 00), there
existu € LPL2 N L2H (R x [0,T]), Q € Nr=oLXL¥(Bg x [0, T]), with
VQ e L®L2NL?H}(R® x [0, T]), such that

0 -~ 0 in L*([0, T], L*(R%)),
vo? -~ vQ in L%(0,T], H'(R3)), (3.12)
u —u in L2([0, T], HY(R3)).

Hence by the lower semicontinuity and (3.7) we have that

E(u, Q)(1) + / (IVul> + |AQ — frac(Q)[?) dxdr

R3><[O,t]
1 1
< E(u, 0)(0) = fR (5|uo|2 + 5|VQ0|2 + FLdG(Qo)) (x,r)dx (3.13)
holds forO <t < T.

Now we want to estimate the pressure function P?. Taking divergence of (3.1),
gives

—APY = div’(Wg[u’] @ u?) + div(V(We[Q°]) - (AQ? — fiac(Q?)))
— divi([We[ 071, AQY — fiac(2)]) (3.14)
= div?(Wg[u’1 @ u’) + div(V(¥[Q"]) - (AQY — frac(Q”))) in R?.
Here we have used in the last step the fact that
div [Wy[ 071, AQ? — fiac(0")]1 =0 in R?,

which follows from (1.16).
For P?, we claim that P? in L%(R3 x [0, T]) and
H PG H S C(a’ b’ c, T7 ||u0||L2(R3)1 ” QO”HI(R3))1 Ve € (07 1]'

(3.15)

L%(R3><[O,T])
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To see this, first observe that (3.9) implies V(Ws[Q%]) € L®L2 N L2H! (R? x
[0, T']). Hence by the Sobolev interpolation inequality we have that

“V(% )H 'OL'3(]R3 [0.T]) = C”V(%[QQD||L;>°L§mL,2Hx1(R3x[o,T])

< C(a, b, e, T, ol 23, 1 Qoll i ws))-

By Holder’s inequality, we then have that

| V(w10 - (AQ" - frac(@")] s

‘ L i (R3x[0,T1)

< [Vwel0”D| Lo B o OT])HAQ ~ fao (@) 2@ g0,y B-16)

= C(a, b,c, T, ||uO||L2(]R3)s ||QO||H1(]R3))o
By Calderon-Zygmund’s L”-estimate [34], we conclude that P? e L%([O, T] x
R3), and

60
H HL%([(),T]x]R@)

= C[”%[ue] B’ ”L%(R3><[O,T])

+ V(W[ 0] - (AQY — fLac(Q ))H

+ Vw1 QD) - (AQY — fLa(@?))] s

‘L” (R3x[0, T])]

<C

[ ; |
L3 (R3x[0,T]) LI R3x[0,T])

<C(a,b,c. T, [uoll 2@, | Qoll 1 rs))-

It follows from (3.15) that we may assume that there exists P € L% (R3 x [0, T
such that, as § — 0,

PY —~ P in L3R3 x [0, T)). (3.17)
From (3.1); and the bounds (3.9) and (3.10), we have that
gu’ = —wy[u’]- vu’ — VP? + Au’ — V(W[ 07]) - (AQY — frac(Q?)
+div([We[ 01, AQY — fLac (09D
3 w3 3 -1,3 3 2 1,4
€ L3(R* x [0, TD + L3([0, T], W™ >3 (R”)) + ﬂ L=([0, T], W™ "3(BR)),
R>0
and for any 0 < R < oo,
3;l19 H 5 5 13 1.4
L3R[0, TD+L3 ([0.T1, W3 (R3)+L2([0,T1. W3 (Bg)) (3.18)
B C(a, b,e, R, T, |laoll 2R3y ||Q0||H1(]R3))’ Vo € (0, 1].

Similarly, it follows from (3.1); and the bounds (3.9) and (3.10) that o, 0’ €
LI@R3 x [0, TT) + Mg L2([0. T1, L3 (Bg)), and

%0’ ‘ L3 ®3x(0.7)+L2(0.71.L3 (Br))
< C(a.b,c, R, T, |[uoll2r3). 1 Qoll 1 (r3)) (3.19)
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forall0 < R < ooand 8 € (0, 1].
By (3.9), (3.10), (3.18) and (3.19), we can apply Aubin-Lions’ compactness
Lemma ([35]) to conclude that, for any 0 < R < oo,

(’, 0%, vQ?) - (u,Q,VQ) in L¥(Bg x[0,T]), as @ — 0. (3.20)

On the other hand, it follows from Fi 4g(Q?) > 01in R x [0, T'] and (3.9) that

sup / |VQ9|2(X1 r)dx < C(a, b,c, T, uollL2r3), ||Q0||H1(R3))~
0<r<T JR3

10
Hence, by (3.20), we also have that forany I < p; <6and 1 < p2 < 7,

0% > Qin LP'(Bg x [0, T]); u’ — u in LP2(Bg x [0, T]) as 6 — 0.
(3.21)

With the convergences (3.12), (3.17), and (3.20), it is not hard to show that the
limit (u, P, Q) is a weak solution of (1.6) and (1.7), i.e., it satisfies the system (1.6)
and (1.7) in the sense of distributions (see also [30] Proposition 3). We leave the
details to interested readers, apart from pointing out that in the sense of distributions,
as6 — 0,

VP? — V(W[ Q%) - fac(Q’) = VP =V Q- fiic(Q) = V(P — FLig(Q)).

To show that (u, P, Q) is a suitable weak solution of (1.6), observe that, as
in Lemma 2.2, we can test equations of u’ in (3.1) by u’¢, and taking a spatial
derivative of the equation of QY in (3.1) and then testing it by VQ%¢ for any
nonnegative ¢ € C§° (R3 x (0, 1]), to obtain the following local energy inequality:

t
/(|u9|2+|VQ9|2)¢(x,t)dx+2// (IVu? 12 + 1A 0% ?)p dxds
R3 0 JR3
t
=// (|u9|2+|VQ9|2)(8,¢+A¢)+zw9[Q9]®VQ9:u9®v¢]dxds
f / (0 P Vg + 2P0 - Ve + 29 (W [0°]) - fia (07 u’ ) dxds
fo / ((We1 01, fLac (D)) : Vu’¢ dxds

o

-2

~

/3 vol @ vo? — vl ’R)) : Vipdxds
R

(=}
~

| (90101 A0 — fLag (@)D : u” @ Ve dxds

~

-2

2,

o\o\

\ [0, Wo 01 : VOI Ve dxds
R-

~

/R L V(iag(@")) - V0¥ dxds. (322)

(=)
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Taking the limit in (3.22) as 8 — 0, we see by the lower semicontinuity that it
holds that

t
/(|u|2+|VQ|2)¢(x,t)dx+2// (IVu* + |AQ*)¢ dxds
R3 0 JR3

60—0

t
w2 [ [ ('R 4180 P)pares]
0 JR3
while it follows from (3.20) and (3.21) that
elin}) Right hand side of (3.22)

< lim inf [/3 (0’2 + V07 2)p (x, 1) dx
R

t
Z// <|“|2+|VQ|2)(3t¢+A¢)dxd;
0 JR3
t
+/0 fR3<|u|2+ IVOP +2(P — FLag(Q)u - V)
+2V0®VQ0 :u® Vedxds

t
+2/ f3 [VO®VQ —IVOIL]: V¢ dxds
0 JR
t
—Z/f [0, AQ]:u® V¢ dxds
0 JR3

t t
—2/ / (@0 — Qw) : VQqudxds—Z/ / V(fLag(Q)) - VO¢ dxds.
0 JR3 0 JR3

Here we have used the following convergence result:
t t
/ /1; V(W[ Q%)) - frac(Q”)u’¢ dxds — / /}; VO - fLic(Q)ug dxds
0 0
t
= [ [ vtFic@puparas
0 JR3

t
= —/ / F1ag(Q)uVe dxds.
0 JR3
(3.23)

Putting these together yields the desired local energy inequality (1.12) for (u, P, Q).
This completes the proof of the existence of suitable weak solution in the first case.
0
In the next subsection, we will indicate how to construct a suitable weak solution

of (3.1) for the Ball-Majumdar potential function.

3.2. The Ball-Majumdar potential | Foux (Q) = Fpm(Q) and Q2 = I ‘

Since Gpwm, given by (1.3), is singular outside the physical domain

1 2
D:{Qes(g”: -3 <h(Q) <3 i=1,2,3],
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we need to regularize it. For this part, we follow the scheme by Wilkinson [38] (Sect.
3) very closely. First we regularize it by using the Yosida—Moreau regularization
of convex analysis [11,36]: For m € NT, define

() = inf [mlA— 0P +Gam)}, vo e 5.
AesP

Then smoothly mollify é'gM through the standard mollifications:
3@ = [, Giu(@ = monR R
0
where ®,,(R) = m>® (mR), and ® € cse (‘5'83)) is nonnegative and satisfies
supp ® C {Q esY: ol < 1}, fsm ®(R)dR = 1.
0

As in [38] Proposition 3.1, G, satisfies the following properties:

(GO) Gg\ is an isotropic function of Q.

(Gl) Gy € C™® (Sé”) is convex on Sés).

(G2) There exists a constant gy > 0, independent of m, such that for anym € NT,
Gin(Q) > —go holds for all Q € S

(G3) Gii(0) < N () < Gam(Q) on ST forallm = 1.
(G4) Ggy — Gem and VoG — VoGawm in Lis.(D), as m — oo.

loc

(G5) There exist a(m), f(m), y (m) > 0 such that
a(m)|Q] — Bm) < |(VoGin(Q))| < y(m)(1 +10)), YO € 5.
(G6) For k > 2,there exists C(m, k) > 0 such that
(VEGE(Q)] = Cm. k(1 + Q). VO € 8.
For our purpose in this paper, we also need the following estimate on G-
Lemma 3.1. For any m € Nt, G\, satisfies
G (0) > 2101 — g0, YO € 8P with |0 > 11 3.24
BM = 4 80, Q € 0 wit |Q| - ’ ( . )
where go > 0 is the same constant given by (G2).

Proof. Since Gpm(Q) = oo for Q & D, it follows from the definition of 5'§M and
(G2) that

~m _ N2
Bn(Q) = inf {mlA — OF + Gani(4)]

v

'f{ A— 2}—
jrelpml 0| 80

= mdist*(Q, D) — go.
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Thus for any Q € SéS) with |Q] > 10, we have

~ 2 [O1\2 m o
Gin(Q) =m(10] — —=)* — g0 = m(==)" — g0 = 101> — go.
BM /3 8 (\/5) 8 ) 8
It is not hard to see that this estimate, along with the definition of GgM, yields
(3.24). The proof is now complete. O
Now we set
K
Fi(Q) = Giw(Q) — S0P, Vo e 57

and

S (Q) = (VoGin(Q) — k0, VO € 8.
Observe that the convexity of G, on 863) yields that
trVo fim(Q)(VQ, VO) = 'V Fi(Q)(VQ. VQ) = —« VO[>, (3.25)

forall 0 € H'(Q,8).

Note that if we view a function on T3 as a Z>- periodic function on R?, then the
“retarded” mollification procedure given in the previous subsection can be directly
performed on functions defined in T?.

Similar to the Sect. 3.1, we can introduce an approximate system of (3.1) for
the Ball-Majumdar potential as follows. For T > 0 and a fixed large N € NV, let
0 = % € (0, 1]. Then we seek (u?™, p?m %™y that solves

3 0%m +um . VW[ Q9] — [0, Wy[ Q7]
= AQM™ — fgy (Q"™),

du?m 4+ wyu?m) . vulm 4 v pom

= Au?" = V(U[Q7M]) - (AQ™™ — fp (0F™)
+div ([¥p[Q7™], AQY™ — fin 1 (Q%™)]),
divu?™ = 0,

(3.26)

in T3 x [0, T], subject to the initial condition (1.7). Here oM = a)(u‘)’”’) =
vu(ﬂ,m_(vué?,m)T
—_—

Since the system (3.26) is simply the system (3.1) with fj 4G replaced by fg},,

we can argue as in the Sect. 3.1 to find a global weak solution (u?m, pom, Qv
of (3.26) and (1.7) in Q1 = T3 x [0, T] such that

W' e LXL2NL2HN(Q7), Q%™ e LYH! N L?H2(Q7), PP™ € L*(Q7).

Moreover, by calculations similar to Lemma 2.1, we deduce that (ue””, Qe’m)
satisfies the global energy inequality, for0 <z < T,

E@®™, Q%™ (1) + /

T3 x[0,¢]
_ 0,m 6,m l 2 l 2

=E@™", 077)(0) = - 5 wol” + 51V Qol” + Fpm(Qo) ) (x) dx.
(3.27)

(Va2 120%™ — f, (0" ™)) ddr
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It follows from (3.27) and (3.25) that
/ |AQ%™ — iy (%™ dxdr
T3 %[0,1]

/]T [0.1] (lAQG,mlz + Q™ — 240%™ . fé"M(Qe‘m)) dxdr
3% ot
/T% 10 1(' e lng(QQ’m”z+2trVQf1§'i\4(Q9””)(VQ9””,VQ‘””) dxdr
2 x[0,1

> / (lAQG,m|2 + |f];nM(Q6,m)|2 _ KvaG,m|2> dxdr.
T3x[0,¢]

Substituting this into (3.27) and applying Gronwall’s inequality, we obtain that for
any0 <t <T,

E@”", 0""™)(1) + /T o (IVu®™ 2 4+ |AQ™? + | £ (Q™™)I?) duxd
x[0,1
seCT/ (1|uo|2+1|vgo|2+FBM(Qo>> (x) dx. (3.28)
T3 2 2

It follows from (3.27) that
m 0,m l 2 l 2
sup Fgm(Q7™)(x, 1) dx < lug|” + =1V Qol” + Fm(Qo) | (x) dx.
0<t<T JT3 T \ 2 2

This, combined with (G2) and (3.24), implies that there exists a sufficiently large
mo = mo(k, go) € NT such that, for all m > my,

m K

(8 2 /{xeT3:|Q""”(x,t)|zll}

m K
=/ (%1077 — g0) = 510°"P] .1y dx
(xeT3: |00 (x,0)|=11) L\ 4 2

<

1% ™M (x, 1) dx

/ FI Q™) (x, 1) dx
{xeT3: |Q9m (x,1)|>11}

= A} F]_Z,”M(Qa’m)(x, t)dx —f F]g"M(Qe’m)(x, t)dx

{xeT3: | Q0 (x,1)|<11}

= /w Fi (0™ (x, 1) dx

[(G(@"™) + g0) = 51077 = go]x. 1) ax

/{xeT3: [Qfm (x,1)| <11} 2

5/ FQM(QQ*mxx,z)dH/
T {

K
(g0 + =107 (x, 1)) dx
x€T3: |Q0m (x,1)|<11) 2
< T3(§|u0| + EIVQol + FBM(QO))(X)dx + (g0 + T)lT |

holds for any 0 < t < T. Therefore we conclude that for m > my, it holds that

sup / 10%™ 2 (x, 1) dx
']1'3

0<t<T (3.29)

= C(I1uoll 2wy, 1Q0ll x| Fos(@o)ll iz » 80, ).
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As in Sect. 3.1, the pressure function P?m golves
— APO™
= div? (We[u”"] @ u?™) + div(V(¥e[Q7™])- in T7. (3.30)
(AQ"™ — fi(Q"™))
We can apply the same argument as in the previous subsection to conclude that
POm e L3(T? x [0, T1), and
0,r
1213 s epouy = C (Ioll 22y 1Q0ll 1 sy 1 o (@)l » 80 K )
(3.31)

With estimates (3.31) and (3.28), we can utilize the system (3.26) to obtain that

8,u9””‘

L2([0,7], W=14(T3))
< (ol 2z Q01 I Fam (@0l iz 80,k ). (3:32)
-

L2([0,T],L%(T3))
= C(Ioll 2wy, 1Qoll ey I Fam(Q0)ll iz g0,k ). (3.33)

uniformly for 6 € (0, 1] and m > my.

For each fixed m > mg, we can assume without loss of generality that there
exists

", P", Q™) e L®L: N L2HN(Q7) x L3(Q7) x L°HN(Qr)

such that as & — O,

wm —~wum in LZH!(Q7),
u’™ ™ in LP(Qr) V1<p <2
POm — P™ in L3(Qp),
Q%m — Q™ in L7HZ(Qr),
Qfm — Q™ in LTLS(Q7), Y1 <1, s < o0,
Q(”" Q%™ —~ AQ™ — fir,(Q™) in L*(Qr),
ma(Q%my — Fi (0™ in L'(Qr).

3

As in Sect. 3.1, we can now verify that (™, P™, Q™) is a weak solution of

9, Q" +u" - VO" —[o", Q"] = AQ™ — fEm(O™),

du™ 4+ u™ . Vu" + V(P — FI\(Q)) 334
= Au" — VQ™ . AQ"+div[Q™, AQ™], '
divu” =0,

in T3 x [0, T], subject to the initial condition (1.7).
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By the lower semicontinuity the following global energy inequality holds: for
0<tr<T,

1 m2 1 m2 m m
/(;u P+ SIVQ"P + Fihy (@), 1 dx
']1‘3
+[ (IVu™ 2 +|AQ™ — fin (Q™)]%) dxdt
T3 x[0,7]

1 1
< / (zuol* + =1V Qol* + Fam(Q0))(x) dx, (3.35)
T3 2 2
and

E@™, 0"™)(t) +/ (IVU™ > + |AQ™ > + | fi(Q™)I7) dxdt

T3 x[0,1]
cT Ion 1 2
<e 1I3(§|110| + EIVQ0| + Fem(Qo))(x)dx, Vi € [0, T]. (3.36)

Also it follows from (3.29), (3.31), (3.32) and (3.36) that

"

max {

50" }

L7L: Q1)
= C(Ioll 2. 100l x| Fost( Qo) icasys » 0. ). (3.37)

Furthermore, we can check that (u™, P™, Q™) is a suitable weak solution of (3.34)
by verifying that it satisfies the local inequality (1.12) with fyyx replaced by f§},.

To show that as m — oo, (u™, P™, Q™) gives rise to a suitable weak solution
of (3.1), we need to first show that Q" lies in a strictly physical subdomain of the
physical domain D, since Gpm(Q) blows up as Q € D tends to dD. This amounts
to establishing an L°°-estimate of Ggym(Q) in terms of the L'-norm of Gsm(Qo),
which was previously shown by Wilkinson [38] in a slightly different setting.

More precisely, we need the following version of a generalized maximum prin-
ciple:

|o™ ||L;>°L2<QT)’ du’™ ||L,2W{1'4(Qr>’

5 )
L3(Qr)

Lemma 3.2. There exist mo € N* and a positive constant Cy, independent of m,
such that for all m > my,
_3
| GEM(Q™ D oogrs) < Cot ™2 |GBM(Q0) | 1 s, + Co, YO <1 < T
(3.38)
For now we assume Lemma 3.2, which will be proved in §4 below. We may
assume without loss of generality that there exists
(, P, Q) € L¥LE N LIHN(Qr) x L3(Qr) x LEH! N L2H2(Qr)
such that
u” —u in L?H!(Q7),
u" —u in L?(Qr), Vl < p < 1?0’
P™ — P in L3(Q7),
Q" — Q in L7HX(Qr),
0" — Q in LIL(Q7), Y1 <r, 5 < 00.
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From (3.38), we can also deduce that forany 0 <6 < T,

[GEM(O) | s sz < (€873 + )| GBM(Q0) | 1 s, + 12T (3.39)

By the logarithmic divergence of Ggm as Q € D — 9D and (3.39), we conclude
that for any § > 0, there exists ¢g = €9(6, T') > 0 such that

Q(x,t) € Dgy, Y(x, 1) € T3 x [8, T], (3.40)

where
1 2 .
Dey :={Qe2>: —3 80 S Q1) = T e, z=1,2,3}. (3.41)

From (3.38) and the quadratic growth property of G\, we also see that there
exists Co > 0, independent of m, such that for m > my,

[Q™ (x,1)| < Co, (x,1) € T> x [8, T]. (3.42)
‘We now claim that
(O™ = fam(Q) in L2(T? x [8, T1), asm — oo. (3.43)

To see this, first observe that (3.36) yields that fg’M(Qm) is uniformly bounded in
L?(T? x [0, T]). Thus there exists a function f € L>(T> x [0, T]) such that

iR (Q™) — f e LX(T? x [0, TY).

Now we want to identify f. It follows from Q™ — Q in L2(T? x [0, T']) that there
exists E,, C T3 x [0, T], with |E,,| — 0, such that

Q™ — Q, uniformly in T3 x [0, T] \ Em,
which, combined with Q(']I‘3 x [8, T]) C Dy,, yields that for sufficiently large m,

Q"™(T3 x [8, T\ Ep) C Dyy.
Since fgy — fBm in WI*OO(D%O ), we conclude that

(0™ = fem(Q), uniformly in T2 x [8, T]\ Ep.

Therefore f = fam(Q) for a.e. (x, 1) € T? x [0, T], and (3.43) holds.
From (3.43) and AQ™ — AQ in L>(T? x [0, T]), as m — oo, we see that

AQ™ — f(Q™) — AQ — fam(Q) in L*(T? x [0, T1), asm — oo,

With all the estimates in hand, it is rather standard to show that passing to
the limit in (3.34), as m — oo first and § — 0 second, yields that (u, P, Q)
is a weak solution of (3.1). While passing to the limit in the local inequality for
(™, P™, Q™),asm — oo first and then § — 0, we can also verify that (u, P, Q)
satisfies the local energy inequality (1.12) with fuk (Q) replaced by fgm(Q). O
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4. Maximum Principles

In this section, we will show the maximum principles for any weak solution
(u, Q) of (1.6) and (1.7) in R3 with the Landau-De Gennes potential function
F1ag(Q) (see also [15,16]), and in T3 with the Ball-Majumdar potential function
Fem(Q) (see also [38]). These will play important roles in the proof of partial
regularity of suitable weak solutions to (1.6) in the Sects. 5 and 6 below.

Lemma 4.1. For (ug, Qo) € Hx H'(R3, 8$), let (u, Q) € L2ZH}(R3 xR}, R3)x
LIZH)?(R3 x R4, 8(53)) be a weak solution of (1.6)—(1.7). If, in addition, Qo €
L®(R3, S((f)) and ¢ > 0, then there exists a constant C > 0, depending on
1 Qoll oo (r3y and a, b, ¢, such that

10(x, 0] < C, ¥(x,1) € R? xR, .1

Proof. This is a well-known fact. The readers can find the proofin [15,16] or [30].
O

Next we will give a proof of Lemma 3.2, which guarantees that Q lies inside
a strictly physical subdomain Dy, so that Fgm(Q) becomes regular and hence
fm(Q) is bounded.

Proof of Lemma 3.2. Tt follows from the chain rule and the equation (3.34); that
G"fM(Q’”) satisfies, in the weak sense, that

(G (Q™) +u™ - V(G (™)
= A(GM(Q™) — uVHGE(Q™(VQ™, VO™) — (™) (Vo Gn(Q™),
< A(Ggp(Q™) — (VoG (Q™) =k Q™) (Vo Gy (Q™) *2)
2
< AGEu(@") + 10"

in T3 x (0, T']. Indeed, this can be obtained by multiplying (3.34); by (VoG (0™))
and using the fact GEIM is a smooth convex function. Therefore GQM(Q’") €
L HXl (’JI‘3 x [0, T']) satisfies, in the weak sense, that

% (GEm(Q™) +u™ - V(Ggy(Q™))
2 o in TP x(0,T]. 4.3)
= A(Ggu(Q™) + 7|Q"’| ;

It follows from (3.35) and (3.37) that Q™ € L?>H2(T? x [0, T]). In particular, by
Sobolev’s embedding theorem, we have that

m
“Q “L%L;O(Wx[o,T])
= C(Ioll 2y 10l r), 1 Fos(@olicesys - g0 ). (44)

Since the drifting coefficient u” in (4.3) is not smooth and Q™ is not bounded
in T3 x [0, T'], we can not directly apply the argument of §8 in [38] to prove 3.38.
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Here we proceed it by first considering an auxiliary equation with mollifying u”
as the drifting coefficient. More precisely, let u* be a standard e-mollification on
T? x [0, T]for0 < € < 1. Thenu” € C*°(T?3 x [0, T]) satisfies divu” = 0 and

u” — u"in L2H(T? x [0, T]), ase — 0.

Also let g be e-mollifications of | Q™ |2 in T3 x [0, T], and h?" be e-mollifications
of Gy (Qo) in T3. Then it follows from (4.4) that for all m > my,

l™ | L2LP(T3x[0.T]) = o™ “i?L;O(Wx[o,T])’
| e ||L1(T3) = HGBM(QO)HLI('JI‘3)’
and
" — 10" in L*(T* x [0, T]), A" — G\ (Qo) in LY(T?), ase — 0.
Now let " € C (T3 x [0, T']) be the unique solution of

2
K
dul +ull - Vot = AV + 7g;" in T? x [0, T1,

vt = hl on T3 x {0}.

(4.5)

For v[", we will modify the argument as illustrated in [38], §8, to achieve that for
O0<t<T,

_3
|02 O oo sy = €172 [ GBM(Q0) | 113, + Co- (4.6)
To show (4.6), decompose v/* = v + vy, where vy solves

dv; +u” - Vo = Avy, in T x [0, T],

4.7
v1=h’:'—/T3h’€", on T3 x {0},
and vy solves
K2
vy +u Vo= Avy +—g”, in T3 x[0,T],
2 (4.8)
vy = / n, on T3 x {0}.
T3

For vy, we can apply the L' — L estimate for advection-diffusion equations on
compact manifold [7] as in Lemma 8.1 of [38] to conclude that

”Ul("t)”Locaﬁ) = Cf%Hh? - /1;3 he ||L1(11‘3) = Cf% ||GBM(Q0)||L1(T3)

4.9)

forO<t <T.
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While for vy, we can multiply (4.8); by |v2|1’_2v2, p > 2, and integrate the
resulting equation over T3 to get

” U2(I)HLP(T‘ =5 ng (t)”Lp(T*)” U2(t)”Lp(T3

1
P

IA

%|T3 88O oo, |v2(0),

so that

m(t) HLOO(']IG)a

d K2 1
E“Uz(r)HLP('ﬂﬁ) = 7‘T3 !

and hence

2 1 T
|02 o ey < [0200)] ) + %|’]1‘3|p/0 2] oo ges, i YO <1 < T.

Sending p — oo and applying (4.4), we obtain that for0 < ¢t < T,

20 HLOC(T3)
2 (T )
< CIR 1 sy + 7/0 10" ()] o, .10)
= ||GBM(Q0)||L1(T3) + C(IIUOIILz(qp), 1Qoll g1 13y 1FBM(Q0)II L1 T3y > 80 K)~

Putting (4.9) and (4.10) together yields (4.6).

Itis not hard to see thatas e — 0, there exists v € L L2NL2H (T3 x [0, T1)
such that v" — v™ in L?(T? x [0, T)). Passing to the limit in the equation (4.5),
we see that v is a weak solution of

2

m m m __ m K_ m,2 : 3
" +u"” - VU = Av" 4+ 2|Q | in T° x [0, T], @.11)
" = G (Qo) on T3 x {0}.
Moreover, passing to the limit of (4.6), we have that forany 0 < < T,
[v" || poo sy = €17 z|}GBM(Qo)HU(T3) + Co. (4.12)

Now observe that by the comparison principle on (4.3), we know that for m > my,
it holds.

5
Em(QM (. 1) V" (1) < Cr72||Gm(Q0) | L1 g3y + Co.
for all (x, ) € T3 x [0, T']. This, combined with (G2), yields (3.38). ]

Note that passing to the limit in (3.38), the suitable weak solution (u, P, Q) to
(3.1), constructed in §3.2, satisfies that forany 0 < § < T,

|GeM(Q) | g gs.rpy < €083 [ GoM(QO)| 1) + o (4.13)

This completes the proof of Lemma 3.2. O
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5. Partial Regularity; Part I

This section is devoted to establishing an €p-regularity for suitable weak solu-
tions (u, Q) of (1.6) in  x (0, co) in terms of renormalized L3-norm of (u, 0).
The argument we will present is based on a blowing up argument, motivated by that
of Lin [23] on the Navier—Stokes equation, which works equally well for both the
Landau-De Gennes potential F14g and the Ball-Majumdar potential Fgp;. More
precisely, we want to establish the following property:

Lemma 5.1. For any M > 0, there exist &g > 0, 0 < 19 < % and Co > 0,
depending on M, such that if (u, Q, P) is a suitable weak solution of (1.6) in
Q x (0, 00), which satisfies, for zo = (xg, o) € 2 X (r2, oo) andr > 0,

<M if Foux = F dQ=R3
10| < 1 bulk LdG an P, 5.1)
IGem(Q)| <M if Fyyx = Fgm and Q =T,
and
2
r*2/ (|u|3+|VQ|3)dxdt+(r*2/ |P|%dxdt) <&, (52
Py (z0) P, (z0)
then
2 3 3 2 3 2
(Tor)™ f (lu]” +IVQI’) dxdr + ((Tor)_ / |P|2 dxdt)
Pror(z()) PIUV(ZO)
1
< = max {r*Z/ (luf + |VO) dxds
2 P, (20)
2
+(r*2/ |P|%dxdz) ,cor3}. (5.3)
P, (z0)

Proof. We prove it by contradiction. Suppose that the conclusion were false. Then
there exists My > 0 such that for any t € (0, %), we can find ; - 0, C; — 00,

andr; > 0,and z; = (x;,1;) € R x (riz, 00) such that

<M if Fouk = FLag, .
0] < Mo i Foute = Frag, P, (z:), (5.4)
IGem(Q)| = Mo if Foux = FBwm,
and
3
ri_Z/ (lu* + V0P dxdr + ('”F2/ IPI2dxdr)” =&}, (5.5)
B, (21) Bry o)
but

(zr,»)—Z/ (u® + |VQP®) dxdr + ((rr,-)_Z/ |P|%c1xdt)2
Ptri (zi) Ptri (zi) (56)

> %max [}, cir?).
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From (5.6), we see that

Cir} < 2(tri )—2f (|u|3+|VQ|3)dxdt+2((rr,-)_2/ |P|%dxdt)2

Prri (zi)

rr (zi)

—4

(uP + [VOP) dxdr + (12 / P13 dxdi)?
r, (zi) P (zi)
3
l

’

so that

2e3 1
ri < (C,-Tl4)3 — 0.

Also from (5.4), we know that there exist Co > 0 and §p > O such that, in the case
Fouk = FBM™,

Q(z) € Ds, and | fem(Q ()] + Vo fBM(Q ()] = Co, Vz € Pri(zi). (5.7)

Define a rescaled sequence of maps
(w;, Qi, PH(x,t) = (riu, 0, rizP)(xl- +rix, t; + rizt), Vx € R3, t>—1.

Then (u;, Q;, P;) is a weak solution of the scaled Beris—Edwards system

Qi +u; - VQ; — o), Qi1 = AQ; — r? fou (Q)),

ow; +u; - Vu; + VP = Aw; — VQ;-AQ; — div[AQ;, O;], (5.8)
divu; =0,
where
— (vVu)T
o) = 2( v~

Moreover, (u;, Q;, P;) satisfies

2
/ (u; > + VO, ?) dxdr + (f P> dxdt) =&, (5.9)
P1(0) P1(0)

and

2
-2 3 13 -2 3
T (lu; |+ [VQil")dxdt + | T | P;|2 dxdt
P2 (0) P, (0)

1 3 3
> Emax g;, Cirj t. (5.10)

Define the blowing-up sequence (u;, Qi, ﬁi) : Pi(0) > R3 x 88 x R, of
(u;, Q;, P,), by letting

u Qi — Qz

Ei &j

Pi
@, 0i, P)(2) = < : .>(Z), Vz = (x,1) € P1(0),
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where

— 1
O = B0 Jevo @

denotes the average of Q; over P;(0). Then (u;, Qi, i’;) satisfies

/ 0; =0,
Py (0)

~ -~ 3
(|ﬁ-|3+|VQ~|3)dxdt+</ |P;|2 dxdr)g? = 1,
-/11’1(0) l l PO ) (.11

2 3
. —~ _ ~ 3 1 r:

r*zf (0; 13 + |IVO;|?) dxdr + <z 2/ |Pi|3dxdr> > fmax{l,C,‘%},
P (0) P 2 &

+(0)

and (u;, @, f’\l ) is a suitable weak solution of the following scaled Beris—Edwards
equation:

~ ~ ~ 2
0:Q0; +eu; - VQ; — [w(;), ;] =A0; — %fbulk(Qi)s
O + &0, - VU, + VP, = AU, — &, VQ;AQ; +div[Q;, AQ;]  (5.12)
divu; = 0.

From (5.11), we assume that there exists
@, 0, P) € L*(P1(0) x LW (®1(0)) x L3 (P1(0))
such that, after passing to a subsequence,
@, 0i, P) — @, 0, P)in L3P (0) x LIW!3®1(0)) x L (P1(0)).

It follows from (5.11) and the lower semicontinuity that
RGN
P1(0)
~ 3.2
+(/ P <1, (5.13)
P (0)

Moreover, we claim that

”ﬁi ”L,“L%(IP’%(O))OL?H)} (IP’%(O)) + ”V@ ” L?OLi(P%(O)>mL%Hg (IP%(O)) =C <oo.

(5.14)
To show (5.14), choose a cut-off function ¢ € C5°(IP1(0)) such that
0<¢ =<1 ¢=1onPy(0), and 38| + V| + IV2¢| < C.
Define
X—xi t—1

¢i(x, 1) = o( —, — ), Y(x,1) € R? x (0, 00).

i

i
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Applying Lemma 2.2 with ¢ replaced by ¢l.2 and applying Holder’s inequality, we
would arrive at

sup / (lul> + 1A 0%)¢? dx+f (IVul? 4+ |V2Q})¢? dxdr
Bri(xi ri \Zi

éC[/ ( )(|“|2+|VQ|2)|(31+A)¢[2|dxdt

+/ ( )<|u|2+|VQ|2+|P|>|u||V¢,-2|dxdt+/P ( )|VQ|2||V2(¢?)|
ri \Zi ri \Zi

+ / (AQI+ 1 fourk(QIDII[V?| + Vo foutk ()Y Q7 dedr].
ri (zi)
Observe that
2 1 2,2 2112
[AQ]u||Ve;|dxdr < |AQ|¢; dxdt+C [ul“|Ve;|~ dxdr.
P, (zi) 2 Jp, @) Py, (zi)
Substituting this into the above inequality and performing rescaling, we obtain that

sup / <|ﬁi|2+|A§i|2)dx+/ (VA1 + V20,1 dxdr
~la<o B%(O) IP’%(O)

Sc[ [ @R+ V0P + i + el VO + 1P drer]
P (0)

r2 -
+C[f —llﬁi|dxdt+ri2/ |VQ,-|2 dxdt]
P1(0) &i Py (0)
2

<cu+iy<c (5.15)
&
This yields (5.14). From (5.14), we may also assume that
@, Q) — @, Q) in L7H{ (P (0)) x L7H; (P} (0)). (5.16)
Since r; < ¢; and by (5.7) |Qi| < Mo and | fouk (Qi)| + [V fouk (Qi)| < Co in

IP1(0), there exists a constant Q € S, (3), with |Q| < My, such that, after passing to
a subsequence,

Qi — Q in Ly (0).

and
r2
E—ffbulk(Qi)—>0 in LOOGP’%(O))-

Hence (u, Q , ﬁ) P 1 ©0) —> R3 x 863) X R solves the linear system:

30— AQ = [0®), 0],
30— AU+ VP = div([0, AD)), (5.17)
diva = 0,
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Applying Lemma 5.2 and (5.13), we know that
~ ~ 1
@, Q) € C¥(P)), P e LX(I=()* 01, C*(B} (0))
satisfies

1‘2/ (|ﬁ|3+|V§|3)dxdt+(t_2/ |P)7 dxdr)’
P2 (0) P, (0)

. ~ =3
< cﬁf (4 + |VOP®) dxdr + (/ |P|z)2
PLO Py (0)

1
<Cc3, vreo, §)~ (5.18)
We now claim that
@, V0) — @ VO) in L*(P; (0)). (5.19)

To prove (5.19), first observe that (5.15) and the equation (5.12) imply that

3

6 3 1.3 —~ 3 3
oty € (L2H™' + L2L3 + L2 W, 1’2)(193(0)); 00 € L7 L (P5(0)),
enjoy the following uniform bounds:

o

6 3 _
(L +L2LE +LE W, 2) @3 O
= C[||Ui||L$°L§(P%(o)) IVl 212 0)) TIVQillsp, o)) TV Qi||L2(]p%(o))]
2 2
=C,
and

[o: i

3
Li(P%(O))

< C[l0; ”L?HQ(P%(O)) + ||Vﬁi||L2(]P%(o)) +1IVO; ||L3(IP%(0)) + ||ﬁi||L3([P>%(o))]
<C.

Thus we can apply Aubin-Lions’ compactness Lemma to conclude the L>-strong
convergence as in (5.19).
It follows from the L3-strong convergence property (5.19) that for any v €

©. §)
fz/ (@ + V0
P, (0)
= fz/ (8P + VO + 1 2(1) < Ct + 17 20(1), (5.20)
+(0)

where o(1) stands for a quantity such that lim o(1) = 0.
11— 00
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Now we need to estimate the pressure P;. First, by taking divergence of the
second equation (5.8);, we see that P; solves

AP = —div’[8; ®; + (V0; ® VO; — %|V§,~|213)] in B, (5.21)
where we have applied Lemma 2.3 to guarantee that
div’[Q;, AQ;1 =0 in Bj.
We need to show that

1—2/ |2 dxdr < Ct2(si +o(1)) + Cz, Vi > 1. (5.22)
P. (0)

To prove (5.22), let n € Cgo(Bl (0)) be a cut-off function such that n = 1 in
B% (0),0 <n < 1. For any —(%)2 <t <0, define E(l)(-, t): R >R by letting

~(1 o~ -~
P,~< )(x, 1) = /3 VIG(x — yn(y)e [l @1
R

~ ~ 1.~
+(VQi®VQi - §|VQ1‘|213)]()’» ndy, (5.23)

where G(-) is the fundamental solution of —A in R3. Then it is easy to check that
PP, 1) = (B, — PV)(., 1) satisfies

~APP(,1)=0in B; (0). (5.24)

For I/D\i(l), we can apply the Calderon-Zygmund theory to show that

) T 112 A2
1270, 5 ey = CeillillLs s, 0y + 1V Qi3 s, 0] (5.25)
so that
) e 2 3012
|| Pi ||L%(]P’l ) = Cgl(”ul ||L3(]P’1(0)) + ”VQl ”L}(]pl (0)))
3
< C(gi +o(1)). (5.26)

From the standard theory on harmonic functions, f’?z) (-,1) € C*°(B 1 (0)) satisfies

1
that forany 0 < 7 < g,

~ 3 ~ 3 -~ 3 ~ 3
[ pPhsc [ pPRscd [ AR+ IR
P (0) ]P’%(O) P% 0

< Ct(l+¢ +o(1)). (5.27)

Putting (5.26) and (5.27) together, we obtain (5.22).
It follows from (5.20) and (5.22) that there exist sufficiently small 7y € (0, }‘)
and sufficiently large ig, depending on tp, such that for any i > i, it holds that

- ~ _ ~ 3 1
1:0_2/ (Iu,'|3+|VQ,~|3)dxdt+(tOZ/ |B)2 dxdr)? < 7

P, (0) P, (0)

This contradicts (5.11). The proof of Lemma 5.1 is completed. O
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We now need to establish the smoothness of the limit equation (5.17), namely,
are have

Lemma 5.2. Assume that (@, Q) € (L L2 ﬂL,zH)})(]P’%) x (L®H!N L,ZHXZ)(]P’%)

and P ¢ L% (P%) is a weak solution of the linear system (5.17), then (U, Q) €
Cc>® P ! ), and the estimate

IFD(Illl +|voP +|P|2)<C93/ (8P +VOP +P13) (5.28)
0

holds for any 6 € (0, §).

Proof. The regularity of the limit equation (5.17) doesn’t follow from the standard
theory of linear parabolic equations in [20], since the source term d1v(QAQ —
AQ Q) in the second equation of (5.17) depends on third order derivatives of Q
This is based on higher order energy methods, for which the cancellation property,
as in the derivation of local energy inequality for suitable weak solutions of (1.6),
plays a critical role.

For nonnegative multiple indices «, 8, and y such that @ =  + y and y is of
order 1, it is easy to see that (V¥ Q, vhu, vFP ﬁ) satisfies

% (V¥0) — A(V¥Q) = [w(V*D), 01,
3 (VAE) — A(VPD) + V(VEP) = div[Q, A(VED)], (5.29)
div(VPa) = 0.

Now we want to derive an arbitrarily higher order local energy inequality for (5.29).
For any given ¢ € C3°(P 1 (0)), multiplying the first equation of (5.29) by V¢ 0p?

and integrating over R3, we obtain that by summing over all y,
d 1 B Ay (2,42 2B 51242
— | SIVVCDIe™+ | IVI(VEO)|"¢
dt Jr3 2 R3
1 ~
=/ SIVVPO)IP @ + A)g?
R3 2
+ A [0, oV (AP + V(V/0) - V4. (530)

Mean while, by multiplying the second equation of (5.17) by VAli$? and integrating
over R3, we obtain that

d
dt
1 N
=/ -|vﬂﬁ|2(a,+A)¢2+/ VAPVFE - Ve?

R 2 R3

1
~|VPEPe? + / IV(VAD)|2¢?
2 R3

+ /3 [0, A(VPO)]: (V(VPE)¢? + VAT ® V¢?). (5.31)
R
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As in the above, we observe that
/R 110, 0(VPD)] : AV )” +10. AV Q)] : V(VFiD?] = 0.
By integration by parts we have that

f vﬁﬁvﬂﬁ.wﬂ:(—l)'ﬂ‘/ - VAvPPVe?). (5.32)
R3 R3

It follows from the second equation of (5.17) that P solves

AP =div’[Q,AQ] =0, in B,

where we have applied Lemma 2.3. Hence, by the standard regularity theory of
harmonic functions,

J

so that, by Young’s inequality, we can derive from (5.32) and (5.33) that

|v’ﬁ|%5c/ P13, I=k k+1,.. 2%, (5.33)

R0 B1©®

/ VAPVFG - V?
R3

" ~3
§C/ (8P + 181D,
B%(O)

Hence, by adding (5.30) and (5.31) together and then taking summation over all
B’s with |B| = k > 0, we obtain that

d 1, - R ~
dt Jr3 2 R3
1 N ~
< /R S UV + 1V 0P (13,0 + V27D
S R
B1 (O
2
+C [ (VIGITHIGL 4 9 RI0)Ive)
R3
1 . ~
< /R SV + 1V 0P (13,0 + V27D

- ~3
+c/ (8P + 1213
B1(0)

1
1 N —~ . —~
+5 /Rsuvk“uﬁ +|VEF2 01 9? +C/Ra (IVa? + |V 1) Vel
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which implies that
d . ~ . ~
. / (VKR + VA O12) g2 +/ (VFHER + (VA2 012) g2
t JRr3 R3
< C/R3(|V"ﬁ|2 +IVEL O (18, @) + V2 (@)

~ -~ 3
+C/ (P +|P|2)
B%(O)

+c/ (IVKE? 4+ [VFH101%) Ve 2. (5.34)
R3

By choosing suitable test functions ¢, it is not hard to see that (5.34) implies that
fork >0,

B%(O) P%(O)

1
—1g=<t=<0

scf <|vkﬁ|2+|vk“§|2>+6/ ([P +1P]2).  (5.35)
IFD%(0) IP’%(0)

It is clear that with suitable adjustment of radius, applying (5.35) inductively on k
yields that

sup / (IVKE1 + [V 01 + / (IVFH12 + [VF201%)
B%(O) Py (0)

1
—15=<t=<0

< c/ (|Vﬁ|2+|v2§|2+c/ ([P +|P|3), Yk > 1. (5.36)
]P’%(O) IP)%(0)

With (5.36), we can apply the regularity theory for both the linear Stokes equa-
tion and the linear parabolic equation to conclude that (W, Q) € C*°(P 1 0)).

Furthermore, applying the elliptic estimate for the pressure equation (5.21) we
see that VKP ¢ CO(}P’% (0)) for any k > 1. For [ > 1, taking ¢-derivative 9/
of both sides of (5.21), we can also see that vka,’ﬁ € CO(]P’% (0)). Therefore
@, 0, P) € C(P1(0)) and the estimate (5.28) holds. This completes the proof
of Lemma 5.2. O

Now we can iterate Lemma 5.1 and utilize the Riesz potential estimates in
Morrey spaces to obtain the following &g-regularity:

Lemma 5.3. For any M > 0, there exists g > 0, depending on M, such that if
(u, Q, P) is a suitable weak solution of (1.6) in Q x (0, 00), which satisfies, for
z0 = (xp, fg) € Q X (rg, 00) and

|0l =M if Fouk = FLag and Q = R3,

inPy(z0),  (5.37
|GBM(Q)| < M lf Fbulk = FBM and Q= "]I‘?), rO(ZO) ( )
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and

2
rO_Z/ (luf® + [VOP) dxdr + (ro_2/ |P|%dxd;) <&, (539
Pro(ZO)

IFDr()(ZO)
then forany 1 < p < oo, (u, P,VQ) € L”(IF’%O (z0)) and

| P.VO e, 0 = C P20, M). (5.39)
4
Proof. From (5.38), we have that

2
(’_0)—2/ (lu)® + |VOP) dxdr + <(r_0)_2[ Ik dxdt) < 8¢j
2 ]p%o 19} 2 ]P’%o(z)

(5.40)
holds for any z € Pr (z0). By applying Lemma 5.1 repeatedly on Pr (z) for

zZ € IP’%O (z0), we have that Co > 0 and 7 € (0, %) such that for any k > 1,

3
(r{;ro)*/ (uf® +|VQ?) dxdr + ((r(’;ro)*Z/ |P|2 dxdt)?
Pfk (2) P (2)
0’0 00
—k ro\—2 3 3
<2 % max (—) (I +|VOP®) dxdr
2 Pry (2)
2
2 3
_2 C
(r—o) / P13 dxdr |, —20 (5.41)
2 Pry (2) 1- 2‘[6
2
Therefore, for 6 = % € (0, %), it holds that for any 0 < s < %0 and z €

]P’%O(Zo),

360

s_2/ (ul® + [VOP + |P[?) dxdr < C(1 + £3)( u ) (5.42)
Py (2)

ro
By (5.37) and Lemma 3.2, there exists C > 0, depending on M, such that
O] + | fourk ()] + [V fourk (Q)] < C in Py (z0). (5.43)

Now we can apply the local energy inequality (1.12) for (u, P, Q) on IP’%O (2), for
Z€ IP>f7o(zo), to get that for 0 < s < 2,

s_lf (IVul*> + |A Q%) dxdr
Ps(2)

< c[<2s)—3 f
Pas(2)

ve? [ wrent [ wor]
Pas(2) Pas(2)

< C+e) ()™,
ro

(|u|2+|VQ|2)+(2s)‘2f (ul® + |VOP + |P|?)
Pas(2) ( 5. 44_)
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Next we employ the estimate of Riesz potentials in Morrey spaces to prove
the smoothness of (u, P, Q) near zp, analogous to that by Huang—Wang [19],
Hineman—Wang [17], and Huang-Lin—Wang [18].

For any open set U C R3xR, 1< p < oo,and 0 < A <5, define the Morrey
space MP*(U) by

MPHU) = {f € LDt [ £ opny = sup r)‘_S/ | £1P dxds < oo}.
zeU,r>0 P (2)

It follows from (5.42) and (5.44) that there exists o € (0, 1) such that
1, V0) € M9 (Py (z0)), P e M3 (P (20)),
(Vu, V2Q) € M>472 (P (z0))-
Write (3.1); as
_ _ 3 3(1—a)
#Q—-—AQ=f f=-u-VO+|o, 0] fouk(Q) € M2 (IP’%o(z()S)45)

Letn € C8°(R4) be a cut off function of IF’%O (zo) suchthat 0 < n < 1,np =1

in Pry (20), [3;n] + V20 < Crg?, Set w = n*(Q — Qzy.r). Where Qz r, is the
average of Q over P 0 (zo). Then

dw—Aw=F, F:=n*f+@n*— An*)(Q — Quy.r) — V> - VO(5.46)

We can check that F € M%’3(1_°‘)(R4) and that it satisfies

1713500 g, < €O+ 20)- (5.47)

Let I denote the heat kernel in R3. Then
IVI|(x, 1) < C8~4((x, 1), (0,0)), V(x,1) # (0,0),

where 8(-, -) denotes the parabolic distance on R*. By the Duhamel formula, we
have that

t
lw(x, )] < /0 /1&3 VI (x — y, 1 = $)[|F(y,s)|dyds = CTi (| F|)(x, 1),
(5.48)
where Zg is the Riesz potential of order 8 on R*, B € [0, 4], defined by

1g(y, 9l
4+ 7P ((x, 1), (v, )
Applying the Riesz potential estimates (see [19] Theorem 3.1), we conclude that
3(1—a)
Vuw e M 12 217®) (R4 and

dyds, Vg € L'(R%).

Ts(g)(x, ) =f
R

< c( + «). (5.49)

A TSR L) P
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3(1 —
Since lim w = oo, we conclude that for any 1 < p < oo, Vw €
C‘T% 1 -2«
LP(Pyy(z0)) and
”vw”L”(PrO(zo)) < C(p, ro, €0)- (5.50)
Since Q — w solves

(@ —w) =A@ —-w) =0 in Pr(zo),

it follows from the theory of heat equations thatforany 1 < p < 00, VQ € IP’%O (zo)
and

||VQ||LP(PrO (z0)) = C(p9 r0580)~ (551)
2

We now proceed with the estimation of u. Let v : R3 x (0, 00) — R3 solve the
Stokes equation

v—AV+ VP

= —div[i?(u®@u+ (VO ® VQ — 1|V 2 13))] + div[n?[Q. AQ]] inR%,
divv =0 inRY,
v(-,0)=0 in R3.

(5.52)
By using the Oseen kernel (see Leray [21]), an estimate of v can be given by
Iv(x. D] < CTi(1X](x. 1), Y(x.1) € R x (0, 00), (5.53)

where
1
X=p'lu@u+(VO® VO - 3IVOIPK) +10,A0]].
As above, we can check that X € M%'3(1_"‘)(R4) and

”X”M%’}('_“)(JR“) < C[||u||i43.3(17a)(1p%0(20)) + ||VQ||?V13.3(1W)(H»%O(ZO))
+11AQ - fbulk(Q)llMa,su—a)(]p%o(ZO))]
< C(1+ ¢p).
Hence we conclude that v e M 30— (R4) and

< + «). (5.54)

=clx|

v 30— 3
H HM 1(725)’3“*”)(]1@4) - M 330 Ry

Asa 1 %, we conclude that forany 1 < p < 0o, v e L?(P,,(z0)) and

||V || LP(PVO (z0)) S C(pv 1o, 80)- (555)
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Note that u — v solves the linear homogeneous Stokes equation in IP’%O (z0):
)y(u—v)—A(w—v)+VP =0, divlu—v) =0 in IP’%O(ZO).

Thenu—v e LOO(IP’%O (z0)). Therefore forany 1 < p < oo, u € LI’(IP’rTo (z0)) and

lull o, oy = €270, 0). (5.56)
4

2
For P, since it satisfies the Poisson equation, for 7o — %" <t <t,

1
~ AP =divV[u®u+ (VO ®VQ - z|VQ|213)] in By (xo). (5.57)
Hence P € LP(IP ) (z0)) and satisfies the (5.39). The proof is now complete. O

The higher order regularity of (3.1) does not follow from the standard theory,
since the equation for u involves V3 Q and the equation for Q involves V. It turns
out that the higher order regularity of (3.1) can be obtained through higher oder
energy methods. Roughly speaking, if (u, P, VQ) isin L? forany 1 < p < oo,
then (3.1) can be viewed as a perturbed version of the linear equation (5.17) with
controllable error terms. Here higher order versions of the cancellation properties
(1.13) and (1.16) in the local energy inequality (1.12) also plays an important role.
This kind of idea has been previously employed by Huang-Lin-Wang (see [18]
Lemma 3.4) for general Ericksen-Leslie systems in dimension two. More precisely,
we have

Lemma 5.4. Under the same assumptions as Lemma 5.3, we have that for any

k > 0, (Vku, VE+10) e (LXL2 N L?H;)(PW(MF (z0)) and the following
i —

estimates hold:

sup (IVku? + [VEH 0%y dx

—(k+1 2 B, ,_ X
to—(i(lﬁ 2( ))ro) <t<ty 22T 2(k+l)r0( 0

+/ (VEHu? 4 79202 1 vk Py dedr O
P 142~ (k+1) (z0)

2 o
< C(k, ro, )eo.

In particular, (u, Q) is smooth in ]P’%o (zo)-

Proof. For simplicity, assume zg = (0, 0) and ro = 8. (5.58) can be proved by an
induction on k. It is clear that when k = 0, (5.58) follows directly from the local
energy inequality (1.12). Here we indicate how to prove (5.58) for k = 1. First,
recall from Lemma 5.3 that, for any i € Ntand 1 < p < o0,

2] @, + | Vifbulk(Q)”Loo@z)
< Ci.e0), |, P, VO, 5, = C(P)eo. (5.59)
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Taking the spatial derivative of (1.6)!, we have

0;0¢ +u-VQOu+uy - VO — [0y, O] — [@, O]
= AQq¢ — (fouk(Q))as

0y +u-Vuy +u, - Vu+ VP, in Py. (5.60)
=Auy —VQ-AQy — VQuAQ +div[Q, AQ]y,
divu, =0,

Here wy = w(uy). Let n € C3°(B2) be such that
0<n<l,n=1linBy,2 n=0o0ut B o1, V| +|Vy| < 16.

Taking V of (5.60); and multiplying it by VQ,n?, and multiplying (5.60); by
Vu,n?, and then, integrating the resulting equations over B, we obtain that

o~ /| V2012 f (ua~V)Q-AQan2—/(U~V)Qa-(AQan2+VQaVn2)
t 3 Q
—/Q(“oz'V)Q'VQavﬂz—/Q[Qawa]'(AQaﬂz'f‘anVﬂz)

- /Q [0 @] — (AQu — (fouk (2)e)] - (AQun® + VQu Vi),

and

20 |Vu|2
2dt |V [“n -Vn + (uoc Viu - ua’] - Paua V’?

2
—/;Z(IVZUIZHZ—TuAnz)—/Q((ua-V)Q~AQan2+(ua~V)Qa-AQn2)

—/Q[QQ,AQJ-(Vuan2+ua®Vn2>—/Q[Q,AQa]~(Vuan2+ua®w2).

Adding these two equations together and regrouping terms, and using the cancel-
lation identity

/[Q,wa]-AQan2=/ [0, AQu]- Vugn?,
Q Q

1 Strictly speaking, we need to take finite quotient D}{ of (1.6) (j = 1, 2, 3) and then send
h— 0.

2 Strictly speaking, we need to multiply A(D{; Q)n2 and V(D}{ u) 172 and thensend 7 — 0.
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we arrive at
1d
EE/ (|V0|2+|V2Q|2)n2+/ (IV2ul? +1avQHn?
rJQ Q
= /Q[(u-V)Qa (AQun* +V0uVIP) + (ug - V)Q - V0o V%]
+/Q<[Q,wa]— AQq) : VQu Vi
+ /Q (100 @] + (foulk (Q))ar) : (AQun® + VQuVn?)
Va5 2 . 2 2
| g (An% U VnY) —ve - (VU + V0ot AQ)D” + Pt - V']

—/Q[Qa,AQ]:(Vuan2+ua®Vn2)—/Q[Q,AQa]iua®VU2

6
= Z A;.
i=1
We can estimate the A;’s separately as follows:

1
|Aql < —f IAVQ|2n2+C/(IVQ|2n2+IVu|2(n2+|Vn|2),
16 Jo Q
1
|A5\§—/ IV2UI2n2+C/ |VQ|2|AQ|2n2+C/ [Vul?|vyl%,
16 Jo Q Q
1
|Ag] < §/Q<|V2u|2+|AVQ|2)nZ+C/Q[|Vu|2|Anz|+|u|2<|Vu|2+|AQ|2>n2]
+CfQ<|Vu|2+|AQ|2)|Vn|2+C/Q<|P|2|Vn|2+|P||Vu||An2|>,
1
lAa\s—/ IAVQ|2n2+C/ YOIVl + A0’
16 Jo Q
+C/Q(|VQI2772+ IVul?|vyl?),
1
|Aa] < —/ IAVQ|2n2+C/(IVu|2+|AQ|2)|Vn|2,
16 Jo Q
1
A1l < R/QIAVQIZHZ+CfQ[(Iu|2|+IVQ|2)AQ|2n2+(|VUI2+|AQ|2)IVUIZ].
Substituting these estimates on the A;’s into the above inequality, we obtain that
d
d—/(|Vu|2+ |V2Q|2)772+/(IV2u|2+IAVQ|2)n2
rJo Q
sC/ (luf* + |VOI* + [Vu]* + |AQ]* + |P|?)
B

142-1

+C/Q(IUI2|VUI2+IHI2IAQ|2+ IVOIPIAQI? + [V QI Vu*)n?.
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Now we want to estimate the second term in the right hand side. By Sobolev-
interpolation inequalities, we have

/ lul?|Vul?n?
Q

= IVunll e IVunlis@ Il o, -

1
= Cl[Vunll 2l Vuan|l

2o VD)

2
LZ(Q) ”u“LIZ(BH_z,[)

< ClIVunll 20 IV (Va2 0l )

<—/ V2ul2? +c/
flul IAQ*
AVO? C AQ?
8 | o1’ n* + |AQ|
By -1
C 4 A 2.2
+ ”u”le(BH—Z*l),/Q' Q| T’
/Q|VQ|2|AQ|2n2

1
sgf IAVQ|2n2+C/ AQP
Q

By -

2 4 2.2
VuP + Cllullsgy ) [ V0P

By -1

+C||VQ||112(BH2_,)/ |AQ*n?
Q

/|VQ|2|Vu|2n2 /|Vu|2n +Cf |Vul?
Q _

By

+CIVQILng, /Q |Vul*n?

and

Substituting these estimates into the above inequality, we arrive at
d 2 2 912y,,2 2,12 24,2
I (Vul* +[V=O[In° + [ (V" +[AVO[)n

Q Q

sc/ (uf> + VO + [Vul? + [AQ* + |P%)
B

1421

O+ 1@ VOl l)>f9<|Vu|2+|v2Q|2>n2. (5.61)

From (5.59), we can apply Gronwall’s inequality to (5.61) to show that (5.58) holds
for k = 1. For k > 2, we can perform an induction argument as in [18] Lemma
3.4. We leave the details to interested readers.
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It is readily seen that by the Sobolev embedding theorem, Lemma 5.3 implies
that (VFu, VK1) € LOO(]P’%O (z0)) for any k > 1. This, combined with the theory
of the linear Stokes equation and the heat equation, would imply the smoothness
of (u, Q) in P’To (z0). This completes the proof. O

Applying Lemma 5.3, we can prove a weaker version of Theorem 1.1.

Proposition 5.1. Under the same assumptions as in Theorem 1.1, there exists a
closed subset ¥ C Q x (0, 00), with ’P%(E) = 0, such that (u, Q) € C®(Q x
(0, 00) \ X).

Proof. First it follows from Lemma 4.1 and Lemma 3.2 that for any § > 0, Q and
fem(Q) are bounded in 2 x (8, 00). Define

Y5 = {z € Qx(8,00): liminfr’z-/ (u® +|VOP) dxds
r—0 Pr(2)

+(r72/ |P|% d)cdt)2 > 88}.
P (2)

From Lemma 5.3, we know that X is closed and (u, Q) € C*®(Q2 x (8, 00) \ Zs).
Since § > 0 is arbitrary, we have that (u, Q) € C*(Q2 x (0, 00) \ Us=02s)-

Sinceu € LXL2NL?H(2x (0, 00))and VQ € L®H'NL? H2(2x (0, 00)),
we see that (u, VQ) € L?(Q x (0, 00)). Moreover, since P solves the Poisson
equation (5.57) in 2 x (0, 00), we conclude that P € L% (2 x (0, 00)). By Holder’s
inequality, we see that s is a subset of

S5 = {z €Qx (8,00 : 1imigfr—§f (lu/® +|VQ|5)dxdr
r—

P, (2)
10
+ (r_% / |P|% d)cdt)2 > g5 }
Pr(z)

A simple covering argument implies that 'P%(Sg) = 0, see [32]. Hence ¥ =
Us=0Xs has P% (X) = 0. This completes the proof. m|

6. Partial Regularity, part II

In this section, we will utilize the results from the previous section and the
Sobolev inequality to first show the so-called A-B-C-D Lemmas (see [5] and [23])
and then establish an improved ¢1-regularity property for suitable weak solutions
to (1.6).

Theorem 6.1. Under the same assumptions as in Theorem 1.1, there exists ¢; > 0

such that if (u, Q) : Q x (0, 00) > R3 x Sé3) is a suitable weak solution of (1.5),
which satisfies, for zop € Q x (0, 00),

1
limsup—/ (IVu]> + |V2Q[?)dxdr < &, (6.1)
r—0 T Pr(z0)

then (u, Q) is smooth near z.
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For simplicity, we assume that zo = (0,0) € 2 x (0, 00). To streamline the
presentation, we introduce the following dimensionless quantities:

A(r) == sup r”/ (lul* + VO dx,
—r2<1<0 By (0)x{r}

B(r) :

1
-/ (Vul? + |V20[?) dxdt,
r JP,.(0,0)
_ 1 3 3

Cr) = — (Ju)® + [VO)?) dxdt,

r P, (0,0)
D(r) == r_Z/ |P|3 dxdr.

P, (0,0)

We also set

(), (1) :=

,Hdx, (VO), () :=
|B-(0)| JB,©) ux, D dx, (VO (1) |B-(0)] JB, ()

VO(x,t)dx.

We also let A < B to denote A < ¢B for some universal positive constant ¢ > 0.
We recall the following interpolation Lemma, whose proof can be found in [5]:

Lemma 6.1. For v € H(R?),

/ |v|q(x,t)dx§(/ |Vv|2(x,t)dx)%_a(/ [v]?(x, t) dx)“
B (0) B, (0) B (0)

+0-4)( / e 1) dx) . (6.2)

forevery B,(0) CR%,2< g <6,a=3(1-9%).
Applying Lemma 6.1, we can have

Lemma 6.2. For any u € L>®([—p2, 0], L>(B,(0))) N L>([—p?, 0], H'(B,(0))),
and Q € L*®([—p>, 0], H'(B,(0))) N L2([—p?, 0], H*(B,(0))), it holds that for
any 0 < r < p,

r\3 3 P\3 3 3
cir s (;) A2(p)+ () A () B (p). (6.3)
Proof. From (6.1) withg =3,a = %, we obtain that, for any v € Hl(Bp 0)),

3 3
/ o> (x, 1) dx < (f |Vv|2(x,t)dx)1(/ lv[*(x, 1) dx)?
B, (0) B (0) B (0)

+r—%(f w2, 1) dx) 2. (6.4)
B,(0)
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Applying Poincaré’s inequality, we obtain that for 0 < r < p,

(lu]® + |VQ[?) dx

<[ (= guise| 9o -avoryl) ar+ (5) [ quP+voras
B, (0) P B, (0)

,Sp/ (lu||Vu] +|VQ||V2QI)dx+(%)3fB o (lu)® + |V Q%) dx

Bp(0) o

Sp%(p‘I/B (|u|2+|VQI2)dX)%(/ (Vul? + V20 d)

P B,o (0

+ (r)3/ (ul? + [VOP) dx
P Bp(())

w

S pIA2 ()(/B (O)<|Vu\2+|v2Q|2>dx)%+(%)3pA<p>.

il
Substituting this estimate into the second term of the right hand side of the previous
inequality, we conclude that

/,w) (|u|3 + |VQ|3) dx

Sol([ (P ivier) aie [ qui+vepe o)’
B,(0) B ()
_3 2 3
+r 2(/ (lu)* + VO (x, 1) dx)?
B, (0)

Sp%A%(p)(/ (IVul® + V2 Q1*)(x, f)dx)%

-

+r*%(/ (luf® + |VQ|2)(x,t)dX)%

B, (0)
9

< (ot + %)(/ (v 1) 4 aip) + (0)'a3 (o).

r2
Integrating this inequality over [—r2, 0], by Holder’s inequality, we have
_ 1 3 3
Cr)=— (lu]” +VQ[”) dx
= JP0,0)

3

9
S () A3 + (o + : (IVul? +V201%) dv) drad (o)
p r2 ,rz (0)

s, 5 ph
< (5)’ao) + 7307 (o7 + 2) AT (0)BE ()
r2
S ORUOR(E %)+ () 1at i)

S (;) Ao+ (2)' 4k (0)B .

This completes the proof of (5.2).
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Next we want to estimate the pressure function.

Lemma 6.3. Under the same assumption as for Lemma 6.2, it holds that for any
0<r<?t
= 2

D(r) < %D(p) + (§)2A%<p)3%(p>. 6.5)

Proof. From the scaling invariance of all quantities, we only need to consider the
case p=1,0 <r < % By taking divergence of the equation (1.5);, we obtain

—AP =div’[u®u+VQ®VQ]
=div’ [(u— (w);) ® (u— (u)) +VQ VO]
=div’[(u— (W) ® @ — W)+ (VO — (VO ® (VO — (VO)1)]
+div [(VQ)1 ® (VO — (VO)1) + (VO — (VD)) ® (VO)1].  (6.6)

Letn € Cgo (R3) be a cut off function of B 1 (0) such that

n=1, in B (0),

n=0,  inR3\ B 0), 6.7)
0=n<=1,|Vy <8

Define the following auxillary function:

Pi(x, 1) = — /R ViG(x —y) i n* ([ — @) ® W — (w))

+(VO-(VON® (VO - (VO + (VO - (VO ® (VO)
+ (VO ® (VO — (VO ](y, 1) dy.

Then we have
—APy=div’ [(u— (1) ® (u— @) + VO ® VO] in By (0),
and
—A(P = P1) =0in B1(0).

For Py, we apply the Calderon-Zygmund theory to deduce that

: 3
1Py o & [ = \LW +|ive-ane| ;.

3
2

+|rivonve - o) ..

5/ (lu— @i’ +1VQ = (VO dx
B1(0)
HEVOE [ [vo-(vonliar ©)
B1(0)
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Smce P — P1 is harmonic in B1 (()) we get
3

3 3
2||P 1”1||2 Srip— 1’1||z Sr(Iei?, + 1PN .
L2(B 0)) L2(31(0)) L2(B1(0) L2(B1(0)
Integrating it over [—r2, 0] and applying (5.8), we can show that

1 3
- |P|2 dxdr
P, (0,0)

1
ir/ |P|%dxdr+—2/ (Ju— @i P + V0 — (VO 1) dxds
P1(0,0) r P1(0,0)

1 3
+—( sup |(VQ>1<r>|)3/ VO — (VO)I 3 dxds
r P1(0,0)

—1<r<0

1
5r/ |PI2dxdt+— (lu— @+ VO — (VO[> dxdr
P1(0,0) P,(0,0)

1
+—2A%(1)/ IVO — (VO)1|? dxdt.
r P1(0,0)
This, combined with the interpolation inequality

/ (lu— P +|VQ — (V) ) dxdr

P1(0,0)
< sup (f (up? + [VOP) dx)¥ x (/ (Vul+|V2QP2) dxdr)
—1Z150  /B1(0) P1(0,0)

and Holder’s inequality

3
/ VO = (VO)i|2dxdr S ([ VO — (VQ)1[* dxdr)?,
P} (0,0)

P (0,0)

&\.n

implies that
1 ;
D(r) S rD(1) + — AT(DBI(1).
r

This, after scaling back to p, yields (6.5). The proof is now complete. O

Proof of Theorem 6.1. For 6 € (0, %) and p € (0, 1), let ¢ € C3°(Py, (0, 0)) be a
function such that

) 1
9 =1inPy(0.0), Vol S S V20l + lor] S (—)

Applying the local energy inequality in Lemma 2.2, the maximum principles Lem-
mas 4.1 and 3.2, and the integration by parts, we obtain that

sup / (lu]® + |V Q})¢? dx + / (IVul? + V20 })¢? dxdr
—(6p)2 <1079 Qx[—(6p)2,0]

5/ (Il + VI (g + IVel* + V2p]) dxdr
[—(0p)2,0]
+[ [(u® = (uP)g,) + IVQ* = VO P)gp) + | Pllul| V| dxdr
[—(6p)2,0]

+/ |VQ|2<p2dxdt+f (IVullV Q| + lul|AQDl|Ve| dxdr.
x[—(0p)2,0] Qx[—(6p)2.0]
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This, with the help of Young’s inequality, gives

/ (IVul|[VO| + [u[|AQD]gl[Ve| dxdt
Qx[~(p)2.0]

1

< - / (IVu]> + V2 Q*)¢? dxdt
2 Jaxi—0p2.0)

+4f (ul® + VO[> |Ve|* dxdt,
Qx[—(0p)2,0]

which implies that

1 1
A(56p) + B(56p)

=  sup —
~(<i<o 0P Bop ©

1
sup  —
—@pr2<i=0 0P
1

< — (lu? + VO g + [Vol* + |V2p]) dxdr
0o JR3x[~(p)2,0)

1
00 JR3x[—(©0p)2,0]

2
(lu? +|VQHdx + —f (IVul? +|V*Q?) dxdt
0o Jpy, ©0,0)
2

N

1
/qum2 +1VO)e? dx + (IVul? + |V Q*)p?* dxdr

Op Jrexi-©p2.01

[(lul* = (ul®ep) + (VO = (IVQH)e,) + | Pl1lul|Ve| dxdt

+— VO |P¢? dxds
0p Jr3x(—(0p)2,01

1
[ auPsivopiasds o [ piuldsar
Py, (0,0) ©p)” Py, (0.0

1 2 2 2 2
+ —= - + IV — (v dxdt
@) /%(O’O) (Iul* = (u)gp| + [IVOI* = (IVQ[*)gpl) ul dx

g5
(6p)3

=hLh+hL+15.

It is not hard to see that

TARS / (luf® +|VQP®) dxdr
((9;0)2 Py, (0,0) )

2 2
3 3

SC3(0p),

1 1 1 3
|| < / lu)® dxdr)3 / |P|2 dxdt
((9;0)2 Py, (0,0) ) ((90)2 Py, (0,0) )

while, by employing Holder’s and Poincaré’s inequalities, we have

1 0 1
151 S ﬁ/ f (Ju]|Vu| + IVQIIVZQI)(/ lul® +VQI*)3 di
©0)= J—0p2 J By, (0) 2

By, (0)

2

SC3(0p) D3 (6p),

2
3

1 1 1
S A2(0p)B2(0p)C3 (0p).
Putting together all the estimates, we have
1 1 2 1 1 1 i 2
A(500) + B(56p) S [C300) + A2 (6p)B2(6p)C3 (p) + C3(6p) D3 (6p)]

< [C38p) + ABP)B@p) + D3 6p)].
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so that
3 1 3 3 2
AT(560) < [COp) + AT 0p) B (6p) + D*(60p)].
while
DXp) 5 6°[D(p) +6~°A3 () B (p)].
and

3,3 3,3 3
C(Op) SO°A2(p) + 60 At(p)Bi(p).
Also note that
3 3 3,3 3
AZ(0p)B2(0p) < 0> A2(p)B(p).
Therefore we conclude that for 0 < 6y < %,
A2(5600) + D*(5600)
_ _ 3 3 3 _ 3 3
< cl63 D*(p) + (6, + 6, HAZ (p) B2 (0) + 6342 (p) + 6, > A% (p) B (p)]
3 _ 3 3
< c[05(D*(p) + A2(p)) + 6, A2 () B2 (p) + 03]
< (62 + 678 B2 (p))(A2 D? 02
< ¢85 + 65 *B2(0))(A2(p) + D*(p)) + ct;.

For &1 > 0 given by Theorem 5.1, let 6y € (0O, %) such that
11
2 . 2
cty = mln{z, 581}'
From (6.1), we know that

lim sup B(p) < 8]2,
p—0

hence there exists pg > 0 such that
67883 (p) <+, V0
ct, (p)_z, < p < po-
Therefore we conclude that there exist 6y € (0, %) and pg > 0 such that
AZ(EGOP) +D (590,0) < E(Az(p) + D (p)) + EMIE Y0 < p < po.

Iterating this inequality yields that

N 2. Lk o3 2 2

AZ((EOO) p)+D ((590) p) = 2—k(A2(p) + D*(p)) + €7 (6.9)

holds forall0 < p < pgpand k > 1.
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Employing (5.2) and (6.9), we obtain that

1 1 301 1 301 301
C((Eem"p) < c[(500)3Af((590)’Hp) + <feo>*3A1((feo)k*‘p)BZ((Eem"*‘p)}

1 1 3
< c[(590)3 + (590)—3812][

holds forall 0 < p < pp and k > 1.
Putting (6.9) and (6.10) together, we obtain that

= l(Az(p)+D2<p)>+sl} (6.10)

1 1 3 1
lim sup [C(( 00) p) + D*((5 90)]‘/))} <c[ +<590>3+(500>3sf]e%5 5%0
k— 00

(6.11)

holds for all p € (0, pp), provided &1 = €1(0p, &9) > 0 is chosen sufficiently
small. Therefore, by Lemma 5.4 (u, Q, P) is smooth near (0, 0). This completes
the proof. O

Theorem 1.1 can be proved by the following covering argument. Let ¥ be the
singular set of suitable weak solutions (u, Q, P). If (x,t) € X, then, by theo-
rem 6.1,

1
lim sup -/ (Vu)® + V20> dxdr = ¢;. (6.12)
Py (x,1)

r—0

Let V be a neighborhood of ¥ and § > 0 such that for all (x, ) € X, we can find
r < 8§ such that P, (x,t) C V and

|
-/ (|Vu|2 + |v2Q|2) dxdr > g,
Py (x.1)

By Vitali’s covering lemma, 3(x;, ;) € V,0 < r; < & such that {P,, (x;, t,-)};’il
are pairwise disjoint and

%)
Y C U IPSr,- (x,-, l,').

i=1

Hence

PL(E) < ZSrl < ;Z/

|Vu|2 n |V2Q|2) dxds
]Pr, (xi,17)

5
2 <|Vu|2 + |v2Q|2) dxdr
€1 JUiPy, (xi 1)

A

A

(|Vu|2+ |V2Q|2> dxdr < oo.
&1 Jv

We can conclude that X is of zero Lesbegue measure. Then we can choose | V| to
be arbitrarily small from the fact that by

/OO/ (|Vu|2+|V2Q|2> dxdt:/oo/ (|Vu|2+|AQ|2) dxdt < 0o
0 Q 0 Q
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and the absolute continuity of the integral, we have

lim (|Vu|2 4 |V2Q|2> dxdt — 0.

Vi=0Jy
Hence
PL(E) = lim PL(2) = 0.
§—0
This completes the proof of Theorem 1.1. O
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