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Abstract
The Schrödinger bridge has demonstrated promis-
ing applications in generative models. It is an
entropy-regularized optimal-transport (EOT) ap-
proach that employs the iterative proportional fit-
ting (IPF) algorithm to solve an alternating pro-
jection problem. However, due to the complexity
of finding precise solutions for the projections,
approximations are often required. In our study,
we study the convergence of the IPF algorithm us-
ing approximated projections and a bounded cost
function. Our results demonstrate an approximate
linear convergence with bounded perturbations.
While the outcome is not unexpected, the rapid lin-
ear convergence towards smooth trajectories sug-
gests the potential to examine the efficiency of the
Schrödinger bridge compared to diffusion models.

1. Introduction
The Schrödinger bridge (SB) problem, originally stemming
from quantum mechanics, offers a dynamic formulation
of entropy-regularized optimal transport (EOT) (Peyré &
Cuturi, 2019). However, the dynamic EOT map is often
too computationally demanding to solve directly. Instead,
solving the SB problem relies on iterative projections to
every other marginal distribution, which motivates the iter-
ative proportional fitting (IPF) algorithm (Kullback, 1968;
Ruschendorf, 1995). The first training stage of IPF is equiv-
alent to the exact training of diffusion models, allowing
the empirical knowledge gained from diffusion models to
be seamlessly inherited. The following training stages of
IPF continue to optimize the transport efficiency, which sig-
nificantly facilitates the estimation of score functions and
enables non-linear transport (Liu et al., 2023; Deng et al.,
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2020; 2022). As such, the minimized transport cost not
only accelerates the inference speed but also potentially
enhances the generation quality. To accelerate inference,
various active research (Albergo & Vanden-Eijnden, 2023;
Liu, 2022; Lipman et al., 2023; Pooladian et al., 2023) has
been studied to encourage straighter trajectories, while the
generation enhancement is still not well understood in the-
ory due in part to the Hutchinson estimator in the divergence
evaluation (Hutchinson, 1989).

In addition, the understanding of the convergence of
Schrödinger bridge in the perspective of optimal transport
with a bounded cost is still not well studied in the litera-
ture. To tackle this issue, we show an approximately linear
convergence of the approximate IPF algorithm based on a
bounded transport cost function. In particular, the analysis
allows extra perturbations in the projections and bridges the
gap between theory and practice. The fast linear conver-
gence of the optimal transport toward smooth trajectories
implies a potential for studying the speed advantages of the
Schrödinger bridge over diffusion models.

2. Preliminaries
2.1. Schrödinger Bridge Problem

Despite the noticeable success of diffusion models in gener-
ative tasks, they have limitations in efficiently transporting
distributions (Lavenant & Santambrogio, 2022). Notably,
the forward process requires a significantly long time T to
approach the prior distribution and facilitate the score esti-
mation, which inevitably leads to a slow inference and large
numerical errors (De Bortoli et al., 2021; Lee et al., 2022).
To solve that problem, the dynamical Schrödinger Bridge
problem (SBP) proposes to minimize a Kullback–Leibler
projection (Peyré & Cuturi, 2019)

inf
P∈D(µ⋆,ν⋆)

KL(P|Q), (1)

where the coupling P belongs to the set of path measures
D(µ⋆, ν⋆) with marginal measures µ⋆ at time t = 0 and
ν⋆ at t = T ; Q is the prior path measure, such as the mea-
sure induced by the path of the Brownian motion (Wiener
process) or Ornstein-Uhlenbeck process. From the perspec-
tive of stochastic optimal control (SOC) (see Section 4.4
of Chen et al. (2021)), the dynamical SBP aims to alleviate
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the expensive transport cost by minimizing the control cost
along the forward process

inf
u∈U

E
{∫ T

0

1

2
∥u(xt, t)∥22dt

}
(2)

s.t. dxt = [f(xt, t) + g(t)u(xt, t)] dt+
√
2εg(t)dwt

(3)

x0 ∼ µ⋆(·), xT ∼ ν⋆(·),

where u(·) is a deterministic control function belongs to an
admissible control set U ; ε is a scalar and is also the regu-
larizer for the underlying entropic optimal transport (EOT).

3. From Schrödinger Bridge to Entropic
Optimal Transport

Diffusion models suffer from sub-optimal transport ef-
ficiency and are slow in the inference. By contrast,
Schrödinger bridge leverages optimal transport (De Bor-
toli et al., 2021; Vargas et al., 2021; Chen et al., 2022b),
which accelerates the inference period and also facilitates
score estimations. The connections of Schrödinger bridge
and entropic optimal transport are detailed hereinafter.

By the disintegration of measures (Léonard, 2014), the
dynamical SBP (1) yields a chain rule (De Bortoli et al.,
2021) as follows

KL(P|Q) = KL(π|G) +
∫∫

X×Y

KL(Pπ|QG)dπ(x0,xT ).

(4)

where π ∈ Π(µ⋆, ν⋆) and Π is the space of couplings with
marginals µ⋆ and ν⋆; G denotes a Gibbs measure that fol-
lows dG ∝ e−cεd(µ⋆⊗ν⋆); the product measure is denoted
by ⊗ and cε(x,y) is a loss function that models the transport
cost between particles x and y; the conditional probability
of P (or Q) given conditional information π (or G) is de-
noted by Pπ (or QG) (De Bortoli, 2022a). Forcing Pπ = QG
yields the static SBP with the optimal coupling π⋆:

π⋆ = argmin
π∈Π(µ⋆,ν⋆)

KL(π|G), (5)

where π⋆ is known as the Schrödinger bridge from µ⋆ to
ν⋆ (if exists). The static SBP formulation yields a structure
property (Peyré & Cuturi, 2019; Nutz, 2022; Chen et al.,
2023) and allows us to represent the Schrödinger bridge
π⋆ using Schrödinger potentials φ⋆ and ψ⋆:

dπ⋆(x,y) = eφ⋆(x)+ψ⋆(y)−cε(x,y)d(µ⋆ ⊗ ν⋆). (6)

This crucial representation enables us to efficiently compute
the optimal coupling and thereby accelerate the inference
process. Moreover, it establishes a connection between the

static SBP and entropic optimal transport.

KL(π|G) =
∫∫

X×Y

log

(
dπ

d(µ⋆ ⊗ ν⋆)

d(µ⋆ ⊗ ν⋆)

dG

)
dπ

=

∫∫
X×Y

cεdπ + KL(π|µ⋆ ⊗ ν⋆) + C.

(7)

where X ∈ Sd and Y ∈ Sd are the parameter spaces of in-
terest, C is the normalizing constant for G. For the rescaled
cost of the form cε = c/ε , the static SBP in the problem
(5) is equivalent to the standard EOT with a ε-regularizer:

inf
π∈Π(µ⋆,ν⋆)

∫∫
X×Y

c(x,y)π(dx,dy) + ε · KL(π|µ⋆ ⊗ ν⋆).

(8)

3.1. Duality for Static Schrödinger bridges

The static Schrödinger bridge is a constrained optimization
problem and naturally yields a dual formulation.

Lemma 1 (Duality. Theorem 3.2 (Nutz, 2022)). Assume
π ∈ Π(µ⋆, ν⋆) is the Schrödinger bridge with potentials
(φ,ψ) ∈ L1(µ⋆)× L1(ν⋆). We have that

min
π∈Π(µ⋆,ν⋆)

KL(π|G) = max
φ,ψ

G(φ,ψ),

G(φ,ψ) := µ⋆(φ) + ν⋆(ψ)−
∫∫

X×Y

eφ⊕ψdG + 1,
(9)

where µ⋆(φ) =
∫
X
φdµ⋆, ν⋆(ψ) =

∫
Y
ψdν⋆.

We notice that there is no duality gap, which motivates
us to maximize the concave dual problem G in Eq.(9) in-
stead. An effective solver for this problem is an alter-
nating maximization scheme. In this scheme, we first
optimize φk+1 = argmaxφG(·, ψk), and then optimize
ψk+1 = argmaxψ G(φk+1, ·).

From a geometric perspective, alternating maximization
corresponds to alternating projections

φk+1 = argmax
φ

G(·, ψk) =⇒

the first marginal of π(φk+1, ψk) is µ⋆, (10a)
ψk+1 = argmax

ψ
G(φk+1, ·) =⇒

the second marginal of π(φk+1, ψk+1) is ν⋆. (10b)

To see why (10b) holds. We first denote the second marginal
of dπ(φk, ψk) := eφk⊕ψkdG by νk and then proceed to
show νk = ν⋆ (Nutz, 2022). Recall that G is concave
and ψk = argmaxψ G(φk, ·), it suffices to show that given
fixed φk ∈ L1(µ⋆), ψk ∈ L1(ν⋆), a constant η and bounded
measurable function δψ : Rd → R, the maximality of
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G(φk, ψk) implies that

0 =
d

dη

∣∣∣∣
η=0

G(φk, ψk + ηδψ)

=ν⋆(δψ)−
∫∫

X×Y

δψe
φk⊕ψkdG

=ν⋆(δψ)−
∫
Y

δψdνk = ν⋆(δψ)− νk(δψ),

(11)

where the second equality follows by Taylor expansion.
Similarly, we can show (10a).

3.2. Approximated iterative proportional fitting (aIPF)

Schrödinger bridge proposes to solve the Schrödinger equa-
tion (Nutz & Wiesel, 2022)

ψ⋆(y) = − log

∫
X

eφ⋆(x)−cε(x,y)µ⋆(dx),

φ⋆(x) = − log

∫
Y

eψ⋆(y)−cε(x,y)ν⋆(dy).

(12)

Since the Schrödinger potential functions (ψ⋆, φ⋆) are not
known a priori, the iterative proportional fitting (IPF) algo-
rithm (Kullback, 1968; Ruschendorf, 1995), also known as
Sinkhorn algorithm, was proposed to solve the alternating
projections in Eq.(10) as follows

IPF : ψk(y) = − log

∫
X

eφk(x)−cε(x,y)µ⋆(dx),

φk+1(x) = − log

∫
Y

eψk(y)−cε(x,y)ν⋆(dy).

(13)

However, given a finite computational budget, projecting to
the ideal measure µ⋆ (or ν⋆) in Eq.(10) at each iteration may
not be practical. Instead, some close approximation µ⋆,k+1

(or ν⋆,k) is used at iteration 2k+1 (or 2k) via Gaussian pro-
cesses (Vargas et al., 2021) or neural networks (De Bortoli
et al., 2021; Chen et al., 2022b). Therefore, one may resort
to an approximate solution that still achieves a reasonable
accuracy within a finite budget:

µ2k+1 = µ⋆,k+1 ≈ µ⋆, ν2k = ν⋆,k ≈ ν⋆, (14)

We refer to the IPF algorithm with approximate marginals
as approximate IPF (aIPF) and present aIPF in Algorithm 1.
The difference between IPF and aIPF is detailed in Figure 1.

The structure representation (6) can be naturally extended
based on approximate marginals as follows

dπ2k = eφk⊕ψk−cεd(µ⋆,k ⊗ ν⋆,k),

dπ2k−1 = eφk⊕ψk−1−cεd(µ⋆,k ⊗ ν⋆,k−1),
(16)

where πk is the approximate coupling at iteration k.

Algorithm 1 One iteration of approximate IPF (aIPF). IPF
serves as the theoretical solver for the EOT formulation of
SBP. In practice, the forward-backward SDE (Chen et al.,
2022b; 2023) can be utilized to solve the integrals (15) and
obtain the approximate measures µ⋆,k and ν⋆,k.

ψk(y) = − log

∫
X

eφk(x)−cε(x,y)µ⋆,k(dx),

φk+1(x) = − log

∫
Y

eψk(y)−cε(x,y)ν⋆,k(dy).

(15)

Figure 1. Comparison between IPF and aIPF. The exact (or approx-
imate) projections of IPF (or aIPF) are highlighted through the
solid lines (or dotted lines). IPF projects to the exact marginals,
but aIPF may not.

4. Convergence of Entropic Optimal Transport
with Bounded Cost

The Schrödinger bridge problem (SBP) has made signifi-
cant progress both theoretically and empirically (Nutz &
Wiesel, 2022; Ghosal & Nutz, 2022; Eckstein & Nutz, 2022;
De Bortoli et al., 2021; Chen et al., 2022b; Vargas et al.,
2021). In particular, SBP provides a classical linear conver-
gence result based on bounded cost functions. However, the
convergence of aIPF based on approximate marginals has
not been studied yet. To fill this gap, we extend the analysis
by introducing controllable perturbations. The key to our
proof is the strong convexity of the dual formulation. For
any φ ∈ L1(µ⋆) and ψ ∈ L1(ν⋆), we consider the objec-
tive function of the dual EOT problem based on the ideal
measures µ⋆ and ν⋆, which can be expressed as follows:

G(φ,ψ) : = µ⋆(φ) + ν⋆(ψ)

−
∫∫

X×Y

eφ⊕ψ−cεd(µ⋆ ⊗ ν⋆) + 1.
(17)

It is worth noting that the marginals µ⋆ and ν⋆ at iteration
k are not directly accessible and we opt for approximates
measures µ⋆,k and ν⋆,k. To quantify the convergence of the
dual objective, we first introduce the following assumptions
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Assumption A1 (Bounded Cost). The cost function cε(x, y)
defined on X×Y is continuous and bounded.

This assumption has been widely used in Nutz & Wiesel
(2022); Carlier & Laborde (2020); Deligiannidis et al.
(2021); Eckstein & Nutz (2022). Similarly, one can also
prove the linear convergence for continuous marginals when
the parameter space X×Y is compact (Chen et al., 2016).
Interested readers are encouraged to explore the study of
diffusion models on constrained domains (Fishman et al.,
2023).

Assumption A2 (Lipschitz smoothness). The energy func-
tions of µ⋆ and ν⋆ are L-Lipschitz smooth.

∥∥∇ log
dµ⋆
dx

(x1)−∇ log
dµ⋆
dx

(x2)
∥∥
2
≤ L∥x1 − x2∥2,∥∥∇ log

dν⋆
dy

(y1)−∇ log
dν⋆
dy

(y2)
∥∥
2
≤ L∥y1 − y2∥2.

The assumption is standard and has been used in Lee et al.
(2022); Chen et al. (2022a; 2023).

Assumption A3 (Score approximation). For any k ∈ N,
x ∈ X and y ∈ Y, ∇ log

dµ⋆,k(x)
dx and ∇ log

dν⋆,k(y)
dy are

the ϵ approximation of score functions ∇ log dµ⋆(x)
dx and

∇ log dν⋆(y)
dy at the k-th iteration, respectively

∥∥∥∇ log
dµ⋆,k(x)

dx
−∇ log

dµ⋆(x)

dx

∥∥∥
2
≤ ϵ(1 + ∥x∥2),∥∥∥∇ log

dν⋆,k(y)

dy
−∇ log

dν⋆(y)

dy

∥∥∥
2
≤ ϵ(1 + ∥y∥2).

The assumption is a standard one in the field (De Bortoli,
2022b), and stronger assumptions have been utilized in
related works such as De Bortoli et al. (2021); Lee et al.
(2022); Chen et al. (2022a; 2023). The errors in the two
marginals don’t have to be the same, and we use a unified ϵ
mainly for analytical convenience.

Assumption A4 (Fourth Moment). The probability densi-
ties for µ⋆ and ν⋆ have bounded fourth moment.

The assumption is standard and is slightly stronger than the
bounded second-moment assumption used in Chen et al.
(2022a).

Approximately linear convergence and proof sketches
We first follow Carlier (2022) and Marino & Gerolin (2020)
in building a centered aIPF algorithm in Algorithm 2 with
scaled potential functions φ̄k and ψ̄k such that µ⋆(φ̄k) = 0.
The centering operation doesn’t change the dual objective
but ensures that the aIPF iterates are uniformly bounded
in Lemma 3. Moreover, the centering operation allows
perturbations in the marginals for practical analysis.

We next exploit the strong convexity of the exponential func-
tion ex associated with the dual in a supporting Lemma 4 to
show a key result G(φ̄⋆, ψ̄⋆) − G(φ̄k, ψ̄k) ≲ O

(
∥φ̄k+1 −

φ̄k∥2L2(µ⋆)
+ ϵ

)
in Lemma 6. Together with the upper bound

∥φ̄k+1−φ̄k∥2L2(µ⋆)
≲ O

(
G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k)+ϵ

)
in Lemma 5, we can derive the desired contraction proper-
ties for the dual objective:

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k+1) ≲ βε

(
G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k)

)
,

where βε := 1 − e−24∥cε∥∞ ∈ (0, 1). Since the centering
operation doesn’t change the dual objective, we can freely
obtain our first main theorem regarding the convergence of
Algorithm 1:

Theorem 1. Given assumptions A1, A2, A3, and A4 hold.
Let (φk, ψk)k≥0 be the iterates of Algorithm 1. Then

G(φ⋆, ψ⋆)−G(φk, ψk)

≤ βkε
(
G(φ⋆, ψ⋆)−G(φ0, ψ0)

)
+O

(
ϵ
)
, (18)

where βε := 1− e
−24∥c∥∞

ε ∈ (0, 1); ϵ is the score approxi-
mation error at the k-th IPF iteration.

As we increase the entropic regularizer ε, we observe a
faster linear convergence. However, this increase also leads
to a larger bias towards the solution of the generalized Kan-
torovich problem

∫∫
X×Y

c(x,y)π(dx,dy) (Peyré & Cuturi,
2019; Nutz, 2022). Therefore, in practical applications, it
becomes necessary to strike a balance and carefully con-
sider the trade-off involved. One can also consider the
Hilbert-Birkhoff projective metric to derive similar iterative
contraction properties as in Chen et al. (2016); Franklin &
Lorenz (1989), where the approximate convergence can be
left as a future work.

5. Conclusions and Limitation
Diffusion models have emerged as the backbone of deep
generative models and have made significant advancements.
However, despite their statistical and dimension-free po-
tential, diffusion models suffer from sub-optimal transport
efficiency and slow inference. The Schrödinger bridge algo-
rithm overcomes these issues by utilizing entropic optimal
transport to optimize transport efficiency. We demonstrate
the convergence analysis of the approximate IPF algorithm
based on a bounded cost function. The fast linear conver-
gence towards smoother trajectories also implies that the
Schrödinger bridge algorithm may be more efficient in gen-
erating samples of higher quality.

However, we acknowledge that bounded cost functions are
limited to specific applications and may not offer sufficient
generality. Future work may extend this assumption to gen-
eral cost functions by leveraging the contraction properties
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of the marginals (Conforti et al., 2023). Moreover, the adapt-
able formulation shows the promise in effectively utilizing
non-linear priors, as indicated by (Deng et al., 2020; 2022),
to expedite generative tasks that deal with complex multi-
modal distributions.
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A. Proof of Convergence with Bounded Cost
Next, we modify Algorithm 1 following the centering method developed in (Carlier, 2022),

Algorithm 2 Centered Sinkhorn. Set φ̄0 := 0. For k ≥ 0, the iterate follows

ψ̄k(y) := − log

∫
X

eφ̄k(x)−cε(x,y)µ⋆,k(dx) (19)

φ̄k+1(x) := − log

∫
Y

eψ̄k(y)−cε(x,y)ν⋆,k(dy) + λk, where (20)

λk :=

∫
X

log

(∫
Y

eψ̄k(y)−cε(x,y)ν⋆,k(dy)

)
µ⋆(dx).

The algorithm differs from Algorithm 1 in that an additional centering operation is included in the updates of φ̄k+1 to ensure
µ⋆(φ̄k+1) = 0. Notably, µ⋆ is required for the centering operation to upper bound the divergence, although it is not directly
accessible and no implementation is needed. The main contribution of the centering operation is that the two coordinates
(φ̄, ψ̄) become separable in L2

∥φ̄⊕ ψ̄∥2L2(µ⋆⊗ν⋆) = ∥φ̄∥2L2(µ⋆)
+ ∥ψ̄∥2L2(ν⋆)

if µ⋆(φ̄) = 0. (21)

The coordinate ascent is equivalent to the following updates

ψ̄k(y) = argmax
ψ̄∈L1(ν⋆)

G(φ̄k, ψ̄), φ̄k(y) = argmax
φ̄∈L1(µ⋆):µ⋆(φ̄)=0

G(φ̄, ψ̄k),

The relation between the Schrödinger potentials (φk, ψk) and centered Schrödinger potentials (φ̄k, ψ̄k) is characterized as
follows
Lemma 2. Denote by (φk, ψk) the Sinkhorn iterates in Algorithm 1. For all k ≥ 0, µ⋆(φk) = −(λ0 + · · · + λk−1).
Moreover, we have

φ̄k = φk − µ⋆(φk), ψ̄k = ψk + µ⋆(ψk). (22)

In particular, φ̄k ⊕ ψ̄k = φk ⊕ ψk and G(φ̄k, ψ̄k) = G(φk, ψk).

Proof Applying the induction method completes the proof directly.

Recall how ψ̄k is defined through the Schrödinger equation

The second marginal of π2k(φ̄k, ψ̄k) = eφ̄k⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k) is ν⋆,k, (23)

as in Eq.(14). However, dπ2k+1(φ̄k+1, ψ̄k) = eφ̄k+1⊕ψ̄k−cεd(µ⋆,k ⊗ ν⋆,k) fails to yield the first marginal µ⋆,k due to the
centering constraint.

Next, we show the modified iterates are still bounded given the bounded cost function c.
Lemma 3. For every k ≥ 0, we have

∥φ̄k∥∞ ≤ 2∥c∥∞, ∥ψ̄k∥∞ ≤ 3∥cε∥∞. (24)

Proof Recall the definition of φ̄k+1 in Algorithm 2, we have ∀x1,x2 ∈ X ⊂ Sd,

φ̄k+1(x1)− φ̄k+1(x2)

= log

∫
Y

eψ̄k(y)−cε(x2,y)ν⋆,k(dy)− log

∫
X

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

≤ log

[
esupy∈Y |cε(x1,y)−cε(x2,y)|

∫
Y

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

]
− log

∫
Y

eψ̄k(y)−cε(x1,y)ν⋆,k(dy)

= sup
y∈Y

|cε(x1,y)− cε(x2,y)| ≤ 2∥cε∥∞.

(25)
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As µ⋆(φ̄k) = 0, we must have supx φ̄k(x) ≥ 0 and infx φ̄k(x) ≤ 0, hence the above implies that ∥φ̄k∥∞ ≤ 2∥c∥∞. The
definition of ψ̄k in Eq.(19) yields ∥ψ̄k∥∞ ≤ ∥φ̄k∥∞ + ∥cε∥∞ ≤ 3∥cε∥∞.

The key to the proof is to adopt the strong convexity of the function ex for x ∈ [−α,∞) and some constant α ∈ R,

eb − ea ≥ (b− a)ea +
e−α

2
|b− a|2 for a, b ∈ [−α,∞). (26)

We also present two supporting lemmas in order to complete the proof

Lemma 4. Given φ,φ′ ∈ L2(µ⋆) and ψ,ψ′ ∈ L2(ν⋆), and define

∂1G(φ,ψ)(x) = 1−
∫
Y

eφ(x)+ψ(y)−cε(x,y)ν⋆(dy)

∂2G(φ,ψ)(y) = 1−
∫
X

eφ(x)+ψ(y)−cε(x,y)µ⋆(dx).

(27)

If both φ⊗ ψ − cε ≥ −α and φ′ ⊕ ψ′ − cε ≥ −α for some α ∈ R, we have

G(φ′, ψ′)−G(φ,ψ) ≥
∫
X

∂1G(φ
′, ψ′)(x)[φ′(x)− φ(x)]µ⋆(dx)

+

∫
Y

∂2G(φ
′, ψ′)(y)[ψ′(y)− ψ(y)]ν⋆(dy)

+
e−α

2
∥(φ− φ′)⊕ (ψ − ψ′)∥L2(µ⋆⊗ν⋆).

Proof By Eq.(26), we have

G(φ′, ψ′)−G(φ,ψ)

= µ⋆(φ
′ − φ) + ν⋆(ψ

′ − ψ) +

∫∫
X×Y

(eφ⊕ψ−cε − eφ
′⊕ψ′−cε)d(µ⋆ ⊗ ν⋆)

≥ µ⋆(φ
′ − φ) + ν⋆(ψ

′ − ψ) +

∫∫
X×Y

(φ⊕ ψ − φ′ ⊕ ψ′)eφ
′⊕ψ′−cεd(µ⋆ ⊗ ν⋆)

+
e−α

2

∫∫
X×Y

∥φ⊕ ψ − φ′ ⊕ ψ′∥22d(µ⋆ ⊗ ν⋆)

=

∫
X

∂1G(φ
′, ψ′)(x)[φ′(x)− φ(x)]µ⋆(dx) +

∫
Y

∂2G(φ
′, ψ′)(y)[ψ′(y)− ψ(y)]ν⋆(dy)

+
e−α

2
∥(φ− φ′)⊕ (ψ − ψ′)∥L2(µ⋆⊗ν⋆).

Lemma 5. G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k) ≥ σ
2

(
∥φ̄k+1 − φ̄k∥2L2(µ⋆)

+ ∥ψ̄k+1 − ψ̄k∥2L2(ν⋆)

)
−O(ϵ), where σ := e−6∥cε∥∞ ;

the big-O notation mainly depends on the smoothness A2 and tail properties A4.

Proof We first decompose the LHS as follows

G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k) = G(φ̄k+1, ψ̄k+1)−G(φ̄k+1, ψ̄k)︸ ︷︷ ︸
I

+G(φ̄k+1, ψ̄k)−G(φ̄k, ψ̄k)︸ ︷︷ ︸
II

.

For the estimate of I, by Lemma 4 with σ = e−6∥cε∥∞ , we have

I ≥
∫
Y

∂2G(φ̄k+1, ψ̄k+1)(y)[ψ̄k+1(y)− ψ̄k(y)]ν⋆(dy) +
σ

2
∥ψ̄k − ψ̄k+1∥L2(ν⋆).
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For the integral above, by the definition of ∂2G in Eq.(27), we have

∂2G(φ̄k+1, ψ̄k+1)(y)ν⋆(dy)

= ν⋆(dy)−
∫
X

eφ̄k+1(x)+ψ̄k+1(y)−cε(x,y)µ⋆(dx)ν⋆(dy)

= ν⋆(dy)−
∫
X

π2k+2(dx,dy)
dµ⋆ ⊗ dν⋆

dµ⋆,k+1 ⊗ dν⋆,k+1
,

(28)

where the last equality follows by the LHS of Eq.(16).

Apply Lemma 7 with respect to dµ⋆

dµ⋆,k+1
(x)∫

X

π2k+2(dx,dy)
dµ⋆ ⊗ dν⋆

dµ⋆,k+1 ⊗ dν⋆,k+1
≤

∫
X

(
1 +O(ϵ∥x∥22 + ϵ)

)
π2k+2(dx,dy)

ν⋆(dy)

ν⋆,k+1(dy)

≤
(
1 +O(ϵ)

)
ν⋆,k+1(dy)

ν⋆(dy)

ν⋆,k+1(dy)

=
(
1 +O(ϵ)

)
ν⋆(dy),

(29)

where the second inequality holds by Lemma 8 and the fact that the second marginal of π2k+2 is ν⋆,k+1 in Eq.(14). Similarly,
we can show

∫
X
π2k+2(dx,dy)

dµ⋆⊗dν⋆
dµ⋆,k+1⊗dν⋆,k+1

≳ (1−O(ϵ))ν⋆(dy).

Combining Eq.(28) and (29), we have

|∂2G(φ̄k+1, ψ̄k+1)(y)ν⋆(dy)| ≲ ϵν⋆(dy). (30)

We now build the lower bound of the integral as follows∫
Y

∂2G(φ̄k+1, ψ̄k+1)(y)[ψ̄k+1(y)− ψ̄k(y)]ν⋆(dy)

≳ −ϵ
∫
Y

∣∣ψ̄k+1(y)− ψ̄k(y)
∣∣ν⋆(dy)

≳ −ϵ,

(31)

where the first inequality follows by Eq.(28) and the second inequality follows by the boundedness of the potential function
in Lemma 3. The above means that I ≥ σ

2 ∥ψ̄k − ψ̄k+1∥L2(µ⋆⊗ν⋆) −O(ϵ). For the estimate of II, Lemma 4 yields

II ≥
∫
X

∂1G(φ̄k+1, ψ̄k)(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx) +
σ

2
∥φ̄k − φ̄k+1∥L2(µ⋆).

Recall the definition of φ̄k+1 in Eq.(20) states that
∫
Y
eψ̄k(y)−cε(x,y)ν⋆,k(dy) = e−φ̄k+1(x)+λk . Apply Lemma 7 with

respect to dν⋆
dν⋆,k

(x)

∂1G(φ̄k+1, ψ̄k)(x) = 1− eφ̄k+1(x)

∫
Y

eψ̄k(y)−cε(x,y)ν⋆,k(dy)
ν⋆(dy)

ν⋆,k(dy)

≥ 1− eφ̄k+1(x)

∫
Y

(
1 +O(ϵ∥y∥22 + ϵ)

)
eψ̄k(y)−cε(x,y)ν⋆,k(dy)

≥ 1− (1 +O(ϵ))eλk −O(ϵ)

∫
Y

∥y∥22eφ̄k+1(x)+ψ̄k(y)−cε(x,y)ν⋆,k(dy)︸ ︷︷ ︸
a bounded non-negative functionR(x) in Eq.(45)

= 1− (1 +O(ϵ))eλk −O(ϵ)R(x)

∂1G(φ̄k+1, ψ̄k)(x) ≤ 1 + (1 +O(ϵ))eλk +O(ϵ)R(x),
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which includes a deterministic scalar (independent of x) and a small perturbation (dependent of x and ϵ) and the last two
inequalities follow by Lemma 9. Combining the centering operation with µ⋆(φ̄k+1) = µ⋆(φ̄k) = 0∫

X

∂1G(φ̄k+1, ψ̄k)(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)

= deterministic scalar ·
∫
X

[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)︸ ︷︷ ︸
:=0 by the centering operation

+ϵ

∫
X

R(x)[φ̄k+1(x)− φ̄k(x)]µ⋆(dx)︸ ︷︷ ︸
integrable by the boundedness ofR,φ̄k+1,ψk

= O(ϵ).

(32)

Combining the estimates of I and II completes the proof.

Now, we are ready to present an important result
Lemma 6. Denoted by (φ̄⋆, ψ̄⋆) the unique Schrödinger potentials with µ⋆(φ̄⋆) = 0. The iterates (φ̄k, ψ̄k)k≥0 of Algorithm
2 given a bounded cost function cε satisfy

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≤ βkε
(
G(φ̄⋆, ψ̄⋆)−G(φ̄0, ψ̄0)

)
+O

(
ϵ
)
, (33)

where βε := 1− e−24∥cε∥∞ ∈ (0, 1).

Proof

By Lemma 4 with α = 6∥c∥∞ and the decomposition in Eq.(21), we have

G(φ̄k, ψ̄k)−G(φ̄⋆, ψ̄⋆) ≥
∫
X

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx)

+

∫
Y

∂2G(φ̄k, ψ̄k)(y)[ψ̄k(y)− ψ̄⋆(y)]ν⋆(dy)

+
σ

2

(
∥φ̄k − φ̄⋆∥2L2(µ⋆)

+ ∥ψ̄k − ψ̄⋆∥2L2(ν⋆)

)
≥

∫
X

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx) +
σ

2
∥φ̄k − φ̄⋆∥2L2(µ⋆)

−O(ϵ),

(34)

where σ := e−6∥cε∥∞ , and the last inequality follows by Eq.(30) and boundedness of ψ̄k and ψ̄⋆ in Lemma 3. For the
first integral, we note that as in Eq.(32),

∫
X
∂1G(φ̄k+1, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx) = 0 because ∂1G(φ̄k+1, ψ̄k)(x) is

deterministic and µ⋆(φ̄k(x) = µ⋆(φ̄⋆(x)) = 0.

Hence ∫
X

∂1G(φ̄k, ψ̄k)(x)[φ̄k(x)− φ̄⋆(x)]µ⋆(dx)

=

∫
X

[∂1G(φ̄k, ψ̄k)(x)− ∂1G(φ̄k+1, ψ̄k)(x)][φ̄k(x)− φ̄⋆(x)]µ⋆(dx)

≥ − 1

2σ
∥∂1G(φ̄k, ψ̄k)− ∂1G(φ̄k+1, ψ̄k)∥2L2(µ⋆)

− σ

2
∥φ̄k(x)− φ̄⋆(x)∥2L2(µ⋆)

,

(35)

where the inequality follows from Hölder’s inequality and Young’s inequality.

Plugging Eq.(35) into Eq.(34), we have

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≤
1

2σ
∥∂1G(φ̄k, ψ̄k)− ∂1G(φ̄k+1, ψ̄k)∥2L2(µ⋆)

+O(ϵ). (36)

Note that

|∂1G(φ̄k, ψ̄k)(x)− ∂1G(φ̄k+1, ψ̄k)(x)| ≤
∫
Y

∣∣∣eφ̄k+1⊕ψ̄k−cε − eφ̄k⊕ψ̄k−cε
∣∣∣ ν⋆(dy)

≤ e6∥cε∥∞

∫
Y

|φ̄k+1 ⊕ ψ̄k − φ̄k ⊕ ψ̄k|ν⋆(dy)

=
1

σ
|φ̄k+1(x)− φ̄k(x)|,

(37)
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where the second inequality follows by Lemma 3 and the exponential function follows a Lipschitz continuity such that:
ea − eb ≤ eM |b− a| for a, b ≤M ; σ := e−6∥cε∥∞ .

First combining Eq.(36) and (37) and then including Lemma 5, we conclude that

G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k) ≤
1

2σ3
∥φ̄k+1 − φ̄k∥2L2(µ⋆)

+O(ϵ)

≤ 1

σ4

(
G(φ̄k+1, ψ̄k+1)−G(φ̄k, ψ̄k)

)
+
O(ϵ)

σ

where the last inequality follows by σ ≤ 1. Further writing ∆k = G(φ̄⋆, ψ̄⋆)−G(φ̄k, ψ̄k), we have

∆k ≤ 1

σ4
(∆k −∆k+1) +

O(ϵ)

σ
.

In other words, we can derive the contraction property as follows

∆k+1 ≤ (1− σ4)∆k + σ3 ·O(ϵ) ≤ · · · ≤ (1− σ4)k+1∆0 +

k∑
i=0

(1− σ4)iσ3 ·O(ϵ).

Denote βε := 1− e−24∥cε∥∞ ∈ (0, 1). We hereby complete the first claim of the theorem for any k ≥ 1

∆k ≤ βkε∆0 +

k−1∑
i=0

βiεσ
3 ·O(ϵ) ≤ βkε∆0 +

1 + βε
βε

k∑
i=0

βiεσ
3O(ϵ)︸ ︷︷ ︸

denoted by C
∑k

i=0 β
i
εϵ

, (38)

where C = 1+βε

βε
σ3.

Since we are still interested in the convergence of the original (un-centered) Sinkhorn algorithm, now we extend the result to
Theorem 1 and provide the proof as follows

Proof [Proof of Theorem 1]

As G(φ̄k, ψ̄k) = G(φk, ψk) by Lemma 2, the convergence of (18) follows directly from (33).

A.1. Auxiliary Results

Lemma 7. Given probability densities ρ(x) = e−U(x)/C and ρ̃(x) = e−Ũ(x)/C̃ defined on Sd, where C and C̃ are the
normalizing constants, the energy functions U and Ũ are differentiable and satisfy

∥∇Ũ(x)−∇U(x)∥2 ≤ ϵ(1 + ∥x∥2). (39)

Moreover, U satisfies the smoothness assumption A2, then for small enough ϵ, we have

1−O(ϵ∥x∥22 + ϵ) ≤ ρ(x)

ρ̃(x)
≤ 1 +O(ϵ∥x∥22 + ϵ), 1−O(ϵ∥x∥22 + ϵ) ≤ ρ̃(x)

ρ(x)
≤ 1 +O(ϵ∥x∥22 + ϵ). (40)

Proof Assumption A2 implies ∥∇U(x)∥2 ≤ ∥∇U(x)−∇U(0)∥2 + ∥∇U(0)∥2 ≤ L∥x∥2 + ∥∇U(0)∥2.

Note that for any x,y ∈ Sd

U(x)− U(y) =

∫ 1

0

d

dt
U(tx+ (1− t)y) =

∫ 1

0

⟨x− y,∇U(tx+ (1− t)y)⟩dt. (41)
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Moreover, there exist x0 such that U(x0) = Ũ(x0) since ρ and ρ̃ are probability densities. Applying Eq.(39) and Eq.(41),
we have

|Ũ(x)− U(x)| =
∣∣∣∣ ∫ 1

0

⟨x− x0,∇Ũ(·)−∇U(·)dt
∣∣∣∣

≤
∫ 1

0

∥x− x0∥2 ·
∥∥∇Ũ(·)−∇U(·)

∥∥
2
dt

≲ ϵ(1 + ∥x∥2)(∥x∥2 + ∥x0∥2) ≲ ϵ(∥x∥22 + 1),

(42)

where the second inequality holds by Eq.(39). As such, we have

|C̃ − C| ≤
∫
Sd
e−U(x)

∣∣e−Ũ(x)+U(x) − 1
∣∣dx ≲ ϵ

∫
Sd
e−U(x)(∥x∥22 + 1)dx︸ ︷︷ ︸

integrable

,
(43)

where the last inequality follows by Eq.(42) and ea ≤ 1+ 2a for a ≤ 1. Eq.(40) follows by combining Eq.(42) and (43).

Lemma 8. Suppose π2k is a coupling in Eq.(16) with marginals µ⋆,k and ν⋆,k. Given bounded cost function A1, the
Lipschitz smoothness assumption A2, and the bounded fourth moment assumption A4, we have∫

X
∥x∥22π2k(dx,dy)
ν⋆,k(dy)

<∞. (44)

Proof

By Eq.(16), we have ∫
X
∥x∥22π2k(dx,dy)
ν⋆,k(dy)

=

∫
X

∥x∥22eφk⊕ψk−cεµ⋆,k(dx)

=

∫
X

∥x∥22eφ̄k⊕ψ̄k−cεµ⋆,k(dx)

≲
∫
X

∥x∥22µ⋆,k(dx)

≲
∫
X

∥x∥22
(
1 +O(ϵ∥x∥22 + ϵ)

)
µ⋆(dx)

<∞,

where the first inequality follows by the bounded cost function in Assumption A1 and the bounded potential function in
Lemma 3; the second inequality follows by Lemma 7; the last inequality follows by assumption A4. .

Lemma 9. Suppose π2k+1 is a coupling in Eq.(16) with marginals µ⋆,k+1 and ν⋆,k. Given bounded cost function A1, the
Lipschitz smoothness assumption A2, and the bounded fourth moment assumption A4, we have

R(x) :=

∫
Y

∥y∥22eφ̄k+1⊕ψ̄k−cε(x,y)ν⋆,k(dy) <∞, (45)

where R(x) is a bounded function.

Proof By a similar proof in Lemma 8 except the coupling is π2k+1 and the integral is w.r.t. Y, we have∫
Y
∥y∥22π2k+1(dx,dy)

µ⋆,k+1(dy)
<∞.

By Eq.(16), we have ∫
Y

∥y∥22eφ̄k+1⊕ψ̄k−cε(x,y)ν⋆,k(dy) =

∫
Y
∥y∥22π2k+1(dx,dy)

µ⋆,k+1(dx)
<∞.


